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Abstract
Motivated by testing isomorphism of p-groups, we study the alternating matrix space isometry

problem (AltMatSpIso), which asks to decide whether two m-dimensional subspaces of n× n altern-
ating (skew-symmetric if the field is not of characteristic 2) matrices are the same up to a change of
basis. Over a finite field Fp with some prime p 6= 2, solving AltMatSpIso in time pO(n+m) is equivalent
to testing isomorphism of p-groups of class 2 and exponent p in time polynomial in the group order.
The latter problem has long been considered a bottleneck case for the group isomorphism problem.

Recently, Li and Qiao presented an average-case algorithm for AltMatSpIso in time pO(n) when
n and m are linearly related (FOCS ’17). In this paper, we present an average-case algorithm for
AltMatSpIso in time pO(n+m). Besides removing the restriction on the relation between n and m,
our algorithm is considerably simpler, and the average-case analysis is stronger. We then implement
our algorithm, with suitable modifications, in Magma. Our experiments indicate that it improves
significantly over default (brute-force) algorithms for this problem.
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1 Introduction

Motivated by testing isomorphism of p-groups, we study the Alternating Matrix Space
Isometry (AltMatSpIso) problem. To state this problem, we set up some notation and
definitions. Let [n] = {1, . . . , n}, and let M(n, q) be the linear space of n× n matrices over
the finite field Fq (q is a prime power). A matrix A ∈ M(n, q) is alternating if for any vector
v ∈ Fnq , vtAv = 0, where vt denote the transpose of v. (When q is odd, A is alternating if and
only if A is skew-symmetric, i.e. At = −A.) Let Λ(n, q) be the linear space of all alternating
matrices in M(n,Fq). Let A,B be subspaces of Λ(n, q). We say that A and B are isometric,
if there exists an invertible matrix T ∈ GL(n, q), such that T tAT := {T tAT : A ∈ A} and
B are the same subspace. The AltMatSpIso problem then asks, given linear bases of two
alternating matrix spaces A and B, decide whether A and B are isometric.

As we will elaborate in detail in Subsection 1.1, the AltMatSpIso problem has been
studied for decades. Indeed, it lies at the heart of the Group Isomorphism (GpI) problem,
and has an intimate relationship with many other isomorphism problems, including Graph
Isomorphism (GI). As a problem in NP ∩ coAM, its worst-case time complexity has barely
been improved over the brute-force algorithm, which enumerates all invertible matrices in
GL(n, q) to search for some T ∈ GL(n, q) satisfying T tAT = B. The brute-force algorithm
takes time qΘ(n2) ·poly(n,m, log q) in the worst case. To obtain an algorithm in time qO(n+m)

would lead to an algorithm testing isomorphism of p-groups of class 2 and exponent p in time
polynomial in the group order, which is a long-standing open problem.

Recently, Li and Qiao developed an average-case algorithm to tackle the AltMatSpIso
problem, when m and n are linearly related [21]. The algorithm takes time qO(n) and tests
isometry between all but at most q−Ω(n) fraction of A in Λ(n, q), and an arbitrary B. Here a
random m-dimensional n× n alternating matrix space A is chosen with probability

[(n
2)
m

]−1

q
,

where
[ ·
·
]
q
denotes the q-Gaussian binomial coefficient and

[(n
2)
m

]
q
is the total number of

m-dimensional alternating matrix spaces in Λ(n, q). This may be viewed as a linear algebraic
analogue of the Erdős-Rényi model for graphs [10]. A key idea behind their algorithm
is to view the AltMatSpIso problem as a linear algebraic analogue of the GI problem [21],
which leads to adapting the individualisation and refinement technique for random graph
isomorphism as used by Babai, Erdős, and Selkow in [2]. We summarise these algorithms
in Subsection 1.2. For convenience, we shall refer to the algorithm from [21] as the Li-Qiao
algorithm.

In this paper, we present another average-case algorithm for AltMatSpIso.

I Theorem 1. Suppose m > 20. There is an algorithm that, for all but at most q−Ω(nm)

fraction of m-dimensional alternating matrix spaces A in Λ(n, q), tests the isometry of A to
an arbitrary m-dimensional alternating matrix space B, in time qO(n+m).

The algorithm in Theorem 1 significantly improves over the Li-Qiao algorithm:
First, it removes the linear dependence of m on n. The Li-Qiao algorithm inherently
requires this linear dependence. That is, for general m, the Li-Qiao algorithm does not
run in time qO(n+m). Indeed, some of its techniques do not work when m is even Ω(n1+ε)
or O(n1−ε) with some 0 < ε < 1.
Second, even in the case of m = Θ(n), the average-case analysis of our algorithm is better:
it works for all but q−Ω(n2) fraction of A, while the Li-Qiao algorithm works for all but
q−Ω(n) fraction.
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Third, our algorithm is considerably simpler than the Li-Qiao algorithm, as the reader
may compare in the descriptions of these algorithms in Subsection 1.2 and Subsection 1.3.

Partly because of the simplicity of our algorithm, we implement our algorithm, with
suitable modifications and some heuristic shortcuts, in Magma [6]. Our experiments indicate
that it improves significantly over default (brute-force) algorithms for this problem.

An immediate open problem is to examine whether our isometry testing algorithm can
be strengthened to a canonical form algorithm for random alternating matrix spaces. For
graph isomorphism, efficient canonical form algorithms for random graphs have long been
known [2, 3]. However, to the best of authors’ knowledge, there have been no canonical form
algorithms for random alternating matrix spaces even in time qo(n2).

1.1 Motivation and related works
Group isomorphism problem. The main motivation for us to study the AltMatSpIso problem
is to understand the complexity of the Group Isomorphism (GpI) problem: Deciding whether
two finite groups of order N are isomorphic. The complexities of GpI depend on how groups
are represented in algorithms. When groups are specified by their multiplication (Cayley)
tables, GpI reduces to the Graph Isomorphism problem (GI); cf. [24, Section 10]. When
groups are represented by generators as permutations, matrices, or black-box groups, GI
reduces to GpI; cf. [14, 23, 24, 13]. In either input model, the state-of-the-art algorithm runs
in time quasi-polynomial in the group order [11, 26].

For our purpose, we shall mostly focus on the Cayley table model, since we do not even
know an No(logN)-time algorithm [29] (log to the base 2), despite that a simple N logN+O(1)-
time algorithm has been known for decades [11, 26]. We note that Rosenbaum presented an
algorithm in time N 1

2 logN+O(1) [27]. Moreover, following Babai’s breakthrough proof that
GI is in quasi-polynomial time [1, 15], GpI in Cayley table model is now a key bottleneck to
put GI in P, as Babai himself pointed out [1, Sec. 13.2 & 13.4 in arXiv version]. The past few
years have witnessed a resurgence of activity on algorithms for this problem with worst-case
analyses in terms of the group order. We refer the reader to [12] which contains a survey of
these algorithms.

A natural approach to tackle GpI is to assume our given groups lie in a certain group class.
For instance, for Abelian groups, one can test their isomorphism in linear time [19]. However,
moving out Abelian a little bit, p-groups of class 2 and exponent p, the next natural group
class beyond Abelian groups, pose great difficulty. Recall that a group is of exponent p if
any nontrivial element has order p, and a group is of class 2 if its commutator subgroup is
contained in its centre. Recent works [20, 9, 7, 21] solved some nontrivial subclasses, and
lead to substantial improvement in practical algorithms. But their methods do not lead to
any improvement for the worst-case time complexity of the general class.

p-groups of class 2 and exponent p, and alternating matrix spaces. Alternating matrix
spaces naturally appear in the study of p-groups of class 2 and exponent p via Baer’s
correspondence [4] for a prime p > 2. In fact, because of this correspondence, most recent
works on this class of groups study alternating matrix spaces or alternating bilinear maps
[20, 9, 7, 21]. We review this correspondence briefly. Given such a p-group, by taking the
commutator map, one obtains an alternating bilinear map. Conversely, given an alternating
bilinear map, one can construct such a p-group using an explicit formula (see e.g. [12, Fact
4.3]). Given an alternating bilinear map Fnp × Fnp → Fmp , one can obtain m n× n alternating
matrices representing it, and take the linear span to get an alternating matrix space. Given
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an alternating matrix space, by taking a linear basis, one can obtain an alternating bilinear
map. The above procedures preserve and respect isomorphism types of groups and isometry
types of alternating matrix spaces. Moreover, it is easy to verify that the above procedures
are computationally efficient in the Cayley table model 1. Therefore, testing isomorphism of
p-groups of class 2 and exponent p in time polynomial in the group order reduces to solving
AltMatSpIso over Fp in time pO(n+m). Because of the current status of GpI, we see that
solving AltMatSpIso in qO(n+m) is already very difficult. Recently, it has been shown that a
large number of (hard) isomorphism problems can be reduced to AltMatSpIso in polynomial
time; we refer the readers to [13] for more details. As an application, in [18], one can also
build post-quantum cryptography schemes based on AltMatSpIso.

Current status of AltMatSpIso. For the AltMatSpIso problem, the brute-force algorithm
takes time qΘ(n2) · poly(n,m, log q). There are two slightly improved worst-case algorithms
within certain range of parameters: the N 1

4 logp N+O(1)-time algorithm for p-group isomorph-
ism by Rosenbaum [27] and Rosenbaum and Wagner [28] translates to a p 1

4 (n+m)2+O(n+m)-
time algorithm for AltMatSpIso over Fp. Li and Qiao [21] adapted Luks’ dynamic programming
technique for GI [25] to obtain a q 1

4 (n2+m2)+O(n+m)-time algorithm for AltMatSpIso. Note
that both algorithms only improve the worst-case time-complexity when m 6 n; in fact, if
m = Ω(n2), then the brute-force algorithm already runs in time qO(n+m).

Another extreme case is when m = O(1), where AltMatSpIso can be solved in poly(n, q)
time for odd q. The algorithm is based on reducing AltMatSpIso to the Alternating Matrix
Tuple Isometry (AltMatTupIso) problem, which asks the following: Given two m-tuples
of alternating matrices A,B ∈ Λ(n, q)m, decide whether there is an invertible matrix
T ∈ GL(n, q) such that T tAT = (T tA1T, . . . , T

tAmT ) = (B1, . . . , Bm) = B. Unlike
AltMatSpIso, the AltMatTupIso problem can be solved in time poly(n,m, log q) for odd q [17].
The reduction from AltMatSpIso to AltMatTupIso is by fixing a tuple of alternating matrices
A in A as basis, and enumerate all possible m-tuples of alternating matrices B in Bm. Then
one can invoke the algorithm for AltMatTupIso to test isometry between A and B efficiently.

1.2 Average-case algorithms for GI and AltMatSpIso
In this subsection, we review the average-case algorithms for GI [2] and for AltMatSpIso [21].

To obtain average-case algorithms for GI (resp. AltMatSpIso), one needs to identify a
property which is satisfied by almost all graphs (resp. alternating matrix spaces) chosen from
a certain random model. Then for those graphs (resp. AltMatSpIso) satisfying the property,
we test its isomorphism (resp. isometry) with an arbitrary graph (resp. alternating matrix
space). The efficiency of the algorithm is guaranteed by both the efficiency of testing the
property and the efficiency of the isomorphism (resp. isometry) testing.

We clarify the random models. In the graph setting, a natural choice is the celebrated
Erdős-Rényi model [10], in which an n-vertex m-edge graph is endowed with probability((n

2)
m

)−1
. In the alternating matrix space setting, Li and Qiao defined a linear algebraic

analogue of the Erdős-Rényi model, where each m-dimensional alternating matrix space in
Λ(n, q) will be chosen with probability

[(n
2)
m

]−1

q
; see also Definition 2.

Average-case algorithm for GI. We first define a property P for graphs, which is a variant
used in [2]. Let G = ([n], E) be a simple undirected graph. Let r 6 n be a positive integer,

1 The procedures are even efficient in matrix groups over finite fields [13, Lemma 7.5].
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S = [r] and S′ = [n] \ [r]. Let B = (S ∪ S′, F ) be the bipartite graph induced by the cut
(S, S′) in G, where F = {{i, j} ∈ E : i ∈ S, j ∈ S′}. We label each j ∈ S′ by its adjacency
relations with those vertices in S. That is, assign an r-bit string fj ∈ {0, 1}r to each j ∈ S′
such that fj(i) = 1 if and only if {i, j} ∈ F . We say a graph G satisfies property P if fj ’s are
distinct over j ∈ S′. It is easy to verify that, choosing r = d3 logne, all but at most n−Ω(1)

fraction of graphs in the Erdős-Rényi model satisfy the property P.
Here is an algorithm which tests isomorphism between graph G (satisfying property

P) and H = ([n], E′) (an arbitrary one), based on the well-known individualisation and
refinement procedure. Let StG be the set of r-bit strings obtained from the property P . Note
that |StG| = n− r. In the individualisation step, we enumerate all r-tuples of vertices in H.
For each r-tuple (i1, . . . , ir) ∈ [n]r, we perform the refinement step: assign the remaining
vertices in H r-bit strings according to their adjacency relations with the r-tuple (i1, . . . , ir)
as before, to obtain another set of bit strings StH . If StG 6= StH we neglect this r-tuple;
otherwise we obtained a bijective map from [n] to [n] by mapping j to ij when j ∈ [r] and
the rest according to the labels. The last step is to check whether this bijective map induces
an isomorphism between G and H.

The above algorithm runs in time nO(logn) if G satisfies property P. To recover the
algorithm in [2], one can canonicalise the choice of the r-tuples by choosing the one with
largest r degrees for both G and H, assuming that the largest r degrees are distinct. (This
is another property which is satisfied by most graphs.)

Average-case algorithm for AltMatSpIso. Li and Qiao generalised the aforementioned graph
property and the individualisation and refinement procedure to the alternating matrix space
setting. It is helpful to think of alternating matrix spaces as a linear algebraic analogue of
graphs. That is, we view vectors in Fnq as a linear algebraic analogue of vertices. We then
viewing alternating matrices as a linear algebraic analogue of edges. This is because we can
think of edges as binary relations and alternating matrices as alternating bilinear forms on
vectors.

We first define a property Q for alternating matrix spaces, in light of the one defined
for graphs. Let A be an m-dimensional alternating matrix space in Λ(n, q), and let r 6 n

be a positive integer. Let U0 and V0 be the n× r and n× (n− r) matrices over Fq, whose
columns are the first r and last (n− r) standard basis, respectively. Let AU0,V0 = U0

tAV0 =
span{U0

tAV0 : A ∈ A}, which is a subspace of M(r × (n − r), q). The role of AU0,V0 is
similar to the role of the bipartite graph B = (S ∪ S′, F ) in the graph setting.2 Recall
that in the graph setting, the hope was to label vertices in S′ uniquely, meaning that they
should have different adjacency relations with vertices in S. An equivalent way of saying
this is that the right automorphism group of this bipartite graph B—those permutations
of the right-hand-side vertices preserving the graph structure—is trivial. Inspired by this,
Li and Qiao define the property Q on A as R := {R ∈ GL(n − r, q) : AU0,V0R = AU0,V0}
has size at most qn, where AU0,V0R = {BR : B ∈ AU0,V0}. Here, R can be thought of as the
corresponding to the right automorphism group in the graph setting. In [21], it is shown
that when m and n are linearly related (m = Θ(n)) and r is a constant (depending on the
ratio m/n), |R| 6 qn for all but at most q−Ω(n) fractions of alternating matrix spaces.

Now we outline the Li-Qiao algorithm for isometry testing. Let B be another m-
dimensional alternating matrix space in Λ(n, q) for testing isometry with A (satisfying the
property Q). In the individualisation step, we enumerate all n× r matrices U ∈ M(n× r, q)

2 Matrix spaces of the form AU0,V0 are studied as a linear algebraic analogue of cuts on graphs in [22].
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whose columns are linearly independent. Denote the columns space of U by CU . We also need
to enumerate all (n− r)-dimensional subspaces CV such that CU ⊕CV = Fnq . CV is specified
by an n× (n− r) matrix V whose columns span CV . Let BU,V = {U tBV : B ∈ B}, which is
a subspace of M(n× (n− r), q). For each (U, V ) with BU,V we perform the refinement step.
That is, we enumerate all R ∈ GL(n− r, q) such that AU0,V0R = BU,V , which can be done
using algorithms from [8, 16]3. If no such R exists we neglect the pair (U, V ). Otherwise, we
can recover an invertible T ∈ GL(n, q) from the information of (U, V ) and R. Finally, check
whether T is an isometry between A and B.

The above algorithm runs in time qO(n), if A satisfies property Q (recall that n and m are
linearly related and r = O(1)). In particular, the two enumerations in the individualisation
step take time at most qrn+r(n−r) = qO(n). In the refinement step, since A satisfies property
Q, |{R ∈ GL(n − r, q) : AU0,V0R = BU,V }| can be bounded above by qn, as the set
{R ∈ GL(n−r, q) : AU0,V0R = BU,V } is either empty, or a coset of the groupH, whose order is
upper bounded by qn as A satisfies property Q we imposed. Thus the enumeration cost in the
refinement step is at most qn. All the other steps can be carried out in time poly(n,m, log q);
we refer the readers to [21] for more technical details on how to verify whether A satisfies
the property Q and how to enumerate elements in {R ∈ GL(n − r, q) : AU0,V0R = BU,V }
and get the invertible matrix T from R and (U, V ).

1.3 A simplified algorithm and its implementation
Although it is a nice linear algebraic analogue of the algorithm in [2], the algorithm in
[21] has several drawbacks. First, the algorithm only works when m and n are linear
related. Second, the algorithm is still somewhat tricky, which makes it difficult to put into
actual implementation. In this subsection, we describe a simpler average-case algorithm
for AltMatSpIso, which works for all m and n (but only for odd q) and achieves the same
performance as the one of Li–Qiao. A detailed description can be found in Subsection 4.1.
This simplified algorithm already captures the essence of the strategy. The main algorithm
for Theorem 1 in Subsection 4.3 further works for any q and achieves better average-case
analysis.

The key idea behind our algorithm. Let A 6 Λ(n, q). The key idea behind our algorithm
is to replace individualising r-dimensional subspaces of Fnq by individualising r-dimensional
subspaces of A. This is inspired by the notion of genus of p-groups of class 2 and exponent p
in [7].

Roughly speaking, genus-r p-groups of class 2 and exponent p correspond to r-dimensional
alternating matrix spaces over Fp. In [7], it is shown that even genus-2 p-groups of class 2
and exponent p demonstrate interesting behaviours. That is to say, constant-genus p-groups
are already non-trivial objects. This leads us to consider individualising constant-dimensional
subspaces of A. In the graph setting, this would correspond to individualising r edges, which
does not differ much from individualising 2r vertices, as each edge connects to two vertices.
In the alternating matrix space setting, it turns out that individualising r-dimensional
subspaces of A could impose severe constraints on the possible isometries, if this subspace
satisfies certain generic conditions. This is not so surprising, as one full-rank alternating
matrix is much more “powerful” than a single edge. Reflecting back, the combination of

3 In fact, the uses of [16, 8] are not necessary, as one can relax the property Q and then only use certain
linear algebra computations; see [21].
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individualisation and refinement from graphs and the genus concept from p-groups reveals a
nice interaction between graph-theoretic techniques and group-theoretic notions. We would
also like to add that, the reason for the algorithm in [21] to individualising r-dimensional
subspaces of Fnq is because it was a close analogy of the average-case graph isomorphism
algorithm of Babai, Erdős, and Selkow [2].

Algorithm outline. We first state another property Q′ on a m-dimensional A 6 Λ(n, q). Let
A = (A1, . . . , Am) be a tuple of ordered linear basis of A. For c ∈ N, set Ac = (A1, . . . , Ac).
We say A satisfies the property Q′ if the group Aut(Ac) := {T ∈ GL(n, q) : T tAcT = Ac}
has order at most qn.4 When c is a large enough constant, all but at most q−Ω(n) fraction
of alternating matrix spaces satisfy property Q, as shown in Theorem 5. Furthermore by
algorithms in [9] (cf. Theorem 7), a generating set of Aut(Ac) can be computed in time
poly(n, log q).

Our algorithm can be now stated as follows. Assume we would like to test isometry for
A (satisfying the property Q′) with an arbitrary B, specified as two m-tuples of alternating
matrices A = (A1, . . . , Am) and B = (B1, . . . , Bm) from Λ(n, q)m for sufficiently large m
and odd q. In the individualisation step, enumerate all c-tuples of alternating matrices
Bc = (B1, . . . , Bc) ∈ Bc. For each Bc we perform the refinement step: Test isometry for
alternating matrix tuples Ac and Bc, using the poly(n, c, log q)-time algorithm in [17] (cf.
Theorem 7). If they are not isometric, we neglect Bc. Otherwise, the algorithm from [17]
computes a specific isometry. Because we have computed Aut(Ac), we can enumerate over
all isometry T such that T tAcT = Bc, and check whether T tAT = B.

The correctness lies in the simple fact that every isometry of A and B maps Ac to a
c-tuple Bc in Bc. The running time of the above procedure is qO(n+m) if A satisfies property
Q′. In particular, the enumeration cost in the individualisation step is at most qcm. In the
refinement step, enumerating all invertible matrix T such that T tAcT = Bc can be done in
time qO(n) · poly(n,m, log q) when q is odd, since {T ∈ GL(n, q) : T tAcT = Bc} is a coset
of the group {T ∈ GL(n, q) : T tAcT = Ac}, whose size is upper bounded by qn by property
Q′. This algorithm is clearly simpler than the Li-Qiao algorithm, as it does not need to
compute BU,V etc..

Implementation and Performance. A bonus is our algorithm is more suitable to implement.
We do so in Magma with some key adjustments, as detailed in Subsection 4.2. The
implementation is publicly available on GitHub as part of a comprehensive collection of
tools—developed and maintained by P. A. Brooksbank, J. Maglione, J. B. Wilson and their
collaborators—to compute with groups, algebras, and multilinear functions [6].

The implementation is more convenient to describe using alternating bilinear maps (as
the default algorithms do). A bilinear map α : V × V →W is alternating if for any v ∈ V ,
α(v, v) = 0. Two alternating bilinear maps α, β : V × V → W are pseudo-isometric, if
they are the same up to the natural action of GL(V )×GL(W ). Let V ∼= Fnq and W ∼= Fmq .
An alternating bilinear map α can be specified by an m-tuple of alternating matrices from
Λ(n, q). Let α and β be represented by the alternating matrix tuples A and B, respectively
and A and B be the corresponding alternating matrix spaces of A and B, respectively. It is
readily verified that α and β are pseudo-isometric if and only if A and B are isometric.

4 The alert reader would note that the property defined here depends on the choice of bases of A. This is
not an essential problem due to the discussion in Section 3.
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Absent additional characteristic structure that can be exploited, the traditional (brute
force) approach to deciding pseudo-isometry between alternating bilinear maps α, β : V ×V →
W is as follows. Let α̂, β̂ : V ∧ V →W denote the linear maps induced by α, β (V ∧ V is the
wedge product of a vector space V with itself). Compute the natural (diagonal) action of
GL(V ) on V ∧V , and decide if ker α̂ and ker β̂—each of codimension dimW in V ∧V—belong
to the same orbit. An alternative version of brute force is to enumerate GL(W ) and check
if one of these transformations lifts to a pseudo-isometry from α to β. Which of these two
brute-force options represents the best choice depends on the dimensions of V and W .

Our implementation is typically an improvement over both options. For example, in
a preliminary experiment, our implementation readily decides pseudo-isometry between
randomly selected alternating bilinear maps F5

3 × F5
3 → F4

3, while both brute-force options
failed to complete. Note that the worst-case for all methods should be when α, β are not
isometric, since in that case one must exhaust the entire enumerated list (or orbit) to confirm
non-equivalence. However, the modifications we made tend to detect non-equivalence rather
easily, since other (easily computed) invariants typically do not align in this case. We were
therefore careful to also run tests with equivalent inputs, so as to ensure a fair comparison
with default methods.

2 Preliminaries

Let [m] = {1, . . . ,m} for m ∈ N. Let
[
n
d

]
q

= (1−qn)·...·(1−qn−d+1)
(1−qd)·...·(1−q) denote the Gaussian

binomial coefficient with parameters n, d and base q. Note that
[
n
d

]
q
counts the number of

d-dimensional subspaces of Fnq . The bound
[
n
d

]
q
6 qnd is useful.

Let M(n× n′,F) (resp. M(n,F)) be the linear space of all n× n′ (resp. n× n) matrices
over F. For a matrix A ∈ M(n× n′,F), At ∈ M(n′ × n,F) denotes the transpose of A. We
use A(i, j) to denotes the (i, j)th entry of the matrix A. The general linear group of degree
n over F is denoted by GL(n,F). When F = Fq for some prime power q, we write simply
M(n, q) and GL(n, q) in place of M(n,Fq) and GL(n,Fq). An n × n matrix A over F is
alternating if for every v ∈ Fn, vtAv = 0. When F is not of characteristic 2, this is equivalent
to the skew-symmetric condition. Let Λ(n,F) be the linear space of all n × n alternating
matrices over F (and Λ(n, q) when F = Fq). We denote A = (A1, . . . , Am) ∈ Λ(n, q)m to be
an alternating matrix tuple and A = span{A1, . . . , Am} 6 Λ(n, q) be an (the corresponding)
alternating matrix space (6 denote the subspace notation).

We say two alternating matrix tuples A,B ∈ Λ(n,F)m are isometric if there exists
T ∈ GL(n,F) such that

T tAT := (T tA1T, . . . , T
tAmT ) = (B1, . . . , Bm) = B.

The set of isometries between A and B is denoted as

Isom(A,B) = {T ∈ GL(n,F) : T tAT = B};

the group of autometries (or self-isometries) of A is denoted as Aut(A) = Isom(A,A).
We say two alternating matrix tuples A,B ∈ Λ(n,F)m are pseudo-isometric if there exist
T ∈ GL(n,F) and R ∈ GL(m,F) such that

T tAT = (T tA1T, . . . , T
tAmT ) = (

m∑
j=1

R(1, j)Bj , . . . ,
m∑
j=1

R(m, j)Bj) =: BR.
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The set of pseudo-isometries between A and B is defined as

ΨIsom(A,B) = {T ∈ GL(n,F) : ∃ R ∈ GL(m, q), T tAT = BR}.

The group of pseudo-autometries (or self-pseudo-isometries) of A is denoted as ΨAut(A) =
ΨIsom(A,A). It is straightforward to see that Isom(A,B) (resp. ΨIsom(A,B)) is a (possibly
empty) coset of Aut(A) (resp. ΨAut(A)).

We say two alternating matrix spaces A,B 6 Λ(n,F) are isometric, if there exists
T ∈ GL(n,F) such that T tAT := {T tAT : A ∈ A} = B. We can define the coset of isometries
from A to B Isom(A,B), and the group of autometries Aut(A), for alternating matrix
spaces. If A and B are the corresponding alternating matrix spaces spanned by A and
B, respectively, then A and B are isometric if and only if A and B are pseudo-isometric,
i.e. Isom(A,B) = ΨIsom(A,B).

For two tuples of alternating matrices A,B ∈ Λ(n,F)m, the the adjoint space from A
to B is defined as Adj(A,B) = {(T, T ′) ∈ M(n,F) ⊕M(n,F) : TA = BT ′}. The adjoint
algebra of A is defined as Adj(A) = {(T, T ′) ∈ M(n,F) ⊕M(n,F) : TA = AT ′}. Clearly,
if T ∈ Aut(A), then (T t, T−1) ∈ Adj(A). Furthermore, if A and B are isometric, then
|Adj(A,B)| = |Adj(A)|.

3 Random models and average-case properties

We now formally define the linear algebraic analogue of the Erdős-Rényi model, which has
been mentioned frequently in Section 1.

I Definition 2 (The linear algebraic analogue of the Erdős-Rényi model). The linear algebraic
analogue of the Erdős-Rényi model, LinER(n,m, q), is the uniform probability distribution
over the set of m-dimensional subspaces of Λ(n, q), that is, each subspace is endowed with
probability

[(n
2)
m

]−1

q
.

We also recall a random model for alternating matrix tuples, introduced in [21].

I Definition 3 (The naive model for alternating matrix tuples). The naive model for alternating
matrix tuples, NaiT(n,m, q), is the probability distribution over the set of all m-tuples of
n× n alternating matrices over Fq, where each tuple is endowed with probability q−(n

2)m.

A useful fact is that if we would like to show a certain property holds with high probability
for alternating matrix spaces in LinER(n,m, q), we can in turn show that a corresponding
property holds with high probability for alternating matrix tuples in NaiT(n,m, q). The
statement can be quantified as follows: Suppose we have P(n,m, q), a property of m-
dimensional alternating matrix spaces in Λ(n, q), and wish to show that P(n,m, q) holds
with high probability in LinER(n,m, q). P(n,m, q) naturally induces P ′(n,m, q), a property
of alternating matrix tuples in Λ(n, q)m that span m-dimensional alternating matrix spaces.
Let Q(n,m, q) be a property of all alternating matrix tuples in Λ(n, q)m, so that Q(n,m, q)
and P ′(n,m, q) coincide when restricting to those alternating tuples spanning m matrix
spaces. The following is proved in [21].

I Proposition 4 ([21, Proposition 13 in arXiv version]). Let P(n,m, q) and Q(n,m, q) be as
above. Suppose in NaiT(n,m, q), Q(n,m, q) happens with probability at least 1− f(n,m, q)
for 0 6 f(n,m, q) < 1. Then in LinER(n,m, q), P(n,m, q) happens with probability at least
1− 4f(n,m, q).
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In the rest of this paper, we assume a random alternating matrix space is chosen from the
linear algebraic analogue of the Erdős-Rényi model and a random alternating matrix tuple is
chosen from the naive model. To prove Theorem 1, it is sufficient to work with alternating
matrix tuples and the naive model.

We now present the average-case property, which will be used in our algorithm. Recall
that in Subsection 1.3, the desired property is to show that, for a random alternating matrix
tuple A = (A1, . . . , Am) ∈ Λ(n, q)m and some c = O(1), the tuple Ac = (A1, . . . , Ac) has
autometry group Aut(Ac) of size at most qn with probability 1−q−Ω(n). We prove a stronger
statement.

I Theorem 5. Let c = 20. For all but at most q−Ω(n) fraction of Ac = (A1, . . . , Ac) ∈
Λ(n, q)c, we have |Adj(Ac)| 6 qn.

Note that |Aut(Ac)| 6 |Adj(Ac)| for any Ac. To prove Theorem 5, we need the following
from [21]. Given a tuple of matrices A = (A1, . . . , Ar) ∈ M(n, q)r, define the image of
U 6 Fnq under A as A(U) := span{Aiu : i ∈ [r], u ∈ U}.

I Definition 3.1. We say A = (A1, . . . , Ar) ∈ M(n, q)r is stable, if for any nonempty proper
subspace U 6 Fnq , we have dim(A(U)) > dim(U).

I Proposition 6 ([21, Proposition 10 in arXiv version]). If A ∈ M(n, q)r is stable, then
|Adj(A)| 6 qn.

Thus, to prove Theorem 5, we need to upper bound the probability of a random alternating
matrix tuple being not stable. The proof is somewhat similar to the one in [21], with one
interesting observation: We can use some random alternating matrices in Λ(n, q) to “mimick”
a random matrix M(n, q). The detail of the proof can be found, e.g. in [5, Section 6.3].

4 Average-case algorithms for AltMatSpIso

4.1 The simplified main algorithm
As we have mentioned in Subsection 1.3, our algorithm invokes the algorithm for testing
isometry for alternating matrix tuples as subroutines, which is formally state it here.

I Theorem 7 ([9, 17]). Let A,B ∈ Λ(n, q)m for some odd q. There exists a poly(n,m, log q)-
time algorithm which takes A and B as inputs and outputs Isom(A,B), specified by (if
nonempty) a generating set of Aut(A) (by the algorithm in [9]) and a coset representative
T ∈ Isom(A,B) (by the algorithm in [17]).

We also need the following observation to enumerate elements in Aut(A), which follows
easily by computing the closure of the given generating set.

I Observation 4.1. Let C1, . . . , Ct ∈ GL(n, q), and let G be the group generated by Ci’s. Let
s ∈ N. Then there exists an algorithm that either reports that |G| > s, or lists all elements
in G, in time poly(s, n, log q).

Now we formally describe the simplified main algorithm for AltMatSpIso stated in Sub-
section 1.3, that is Algorithm 1. Note that we are given alternating matrix tuples A and B,
which span A and B, respectively. By the discussion in Section 2, we can equivalently decide
the pseudo-isometry between A and B.

I Proposition 8. Algorithm 1 runs in time poly(qcm, s, n).



P.A. Brooksbank, Y. Li, Y. Qiao, and J. B. Wilson 39:11

Algorithm 1 The first average-case algorithm for AltMatSpIso.
Input: A = (A1, . . . , Am),B = (B1, . . . , Bm) ∈ Λ(n, q)m, c, s ∈ N, and q is odd.
Output: Either (1) “|Aut(Ac)| > s.”, or (2) ΨIsom(A,B) as a set L, which may be empty.
Algorithm procedure:

1. Set L← {}. Set Ac = (A1, . . . , Ac).
2. Use Theorem 7 to compute a generating set for Aut(Ac).
3. Use Observation 4.1 with input s and the generating set of Aut(Ac). (If |Aut(Ac)| > s,

we terminate the algorithm and report that “|Aut(Ac)| > s.”)
4. Set B = span{B1, . . . , Bm}; for every Bc = (B′1, . . . , B′c) ∈ Bc, do the following.
(a) Use Theorem 7 to decide whether Ac and Bc are isometric.
(b) If not, go to the next Bc. Otherwise, we get the non-empty coset Isom(Ac,Bc).
(c) For every T ∈ Isom(Ac,Bc), do the following.

Test whether the linear spans of T tAT and B are the same. If not, go to the
next T . If so, add T into L.

5. Output L.

Proof. If Algorithm 1 outputs |Aut(Ac)| > s, then its running time is determined by The-
orem 7 and Observation 4.1, which together require poly(s, n, log q).

If |Aut(Ac)| 6 s, we analyse the two For-loops at Step 4 and Step 4c, respectively. The
first loop adds a multiplicative factor of qcm, since enumerating all matrices in B costs
qm. The second loop adds a multiplicative factor of poly(n, s, log q), due to the fact that
| Isom(Ac,Bc)| = |Aut(Ac)| 6 s (as Isom(Ac,Bc) is a coset of Aut(Ac)). Other steps can
be carried out in time poly(n, log q). Therefore the overall running time is upper bounded
by poly(qcm, s, n). J

We prove the correctness of Algorithm 1, if it does not report |Aut(Ac)| > s.

I Proposition 9. If Algorithm 1 does not report |Aut(Ac)| > s, then it lists the set of
pseudo-isometries (resp. isometries) between A (resp. A) and B (resp. B). In particular,
| Isom(A,B)| = |ΨIsom(A,B)| 6 qcm · s.

Proof. By Step 4c, every T added to L is a pseudo-isometry. We are left to show that L
contains all the pseudo-isometries. For this, take any pseudo-isometry T . Since T tAT = B,
we know T tAcT is equal to some Bc ∈ Bc. So when enumerating these Bc in Step 4, T will
pass all the tests in the following, and then be added to L. J

It remains to specify the choices of c and s in Algorithm 1. This can be done by Theorem 5.

I Proposition 10. Let c = 20 and s = qn. For all but at most q−Ω(n) fraction of Ac =
(A1, . . . , Ac) ∈ Λ(n, q)c, we have |Aut(Ac)| 6 s.

Proof. This is because, if T ∈ Aut(Ac), then (T t, T−1) ∈ Adj(Ac). So |Aut(Ac)| 6
|Adj(Ac)|. J

Combining Propositions 8 to 10, we have the following theorem.

I Theorem 11. Let m > 20, and let Fq be a finite field of odd size. For all but at most
q−Ω(n) fraction of A = (A1, . . . , Am) ∈ Λ(n, q)m, Algorithm 1 tests the isometry of A with
an arbitrary B ∈ Λ(n, q)m in time qO(n+m).
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4.2 Magma implementation of Algorithm 1
To make this algorithm suitable for practical purposes, recall that the algorithm’s running
time is dominated by the two For-loops which give multiplicative factors of qcm and s,
respectively. For the average-case analysis we used c = 20, but having this standing on
the exponent is too expensive. In practice, actually using c = 3 already imposes a severe
restriction on s, the order of Aut(Ac). So we use c = 3 in the implementation which gives a
reasonable performance.

But having q3m in the For-loop is still too demanding. Indeed, in practice the tolerable
enumeration is around 510, namely q = 5 and 10 on the exponent. So with c = 3, the range
of m is still severely limited. (Interestingly, the algorithm seems to have a better dependence
on n.) It is most desirable if we could let c = 1, namely simply qm.

To achieve that we use the following heuristic. Note that if A1, . . . , Ac are low-rank
matrices, then we will only need to match them with the low-rank matrices from B. Our
experiement shows that, for a random m-tuple of alternating matrices A over Fq, when q
is a small constant, the number of low-rank (i.e. non-full-rank) matrices in the linear span
of A is expected to be small (i.e. much smaller than qm) and non-zero (i.e. no less than
3) at the same time. Note that the set of all low-rank matrices can be computed in time
qm ·poly(n, log q)-time. We then choose 3 low-rank matrices from the linear span of A. Then
use qm · poly(n, log q)-time to compute the set of low-rank matrices from B, denoted as Bl.
We can then replace enumerating Bc with Bcl , which in general is much smaller.

4.3 The main algorithm and proof of Theorem 1
We now introduce the algorithm (see Algorithm 2) that supports Theorem 1, which differs
from Algorithm 1 in two places.
1. The first and major difference is to replace the uses of Aut(Ac) and Isom(Ac,Bc) with the

adjoint algebra Adj(Ac) and adjoint space Adj(Ac,Bc), thereby avoiding using Theorem 7.
Since Adj(Ac) and Adj(Ac,Bc) are easy to compute over any field, this removes the odd
q issue. On the other hand, although Adj(Ac) and Adj(Ac,Bc) are also easier to analyse,
Adj(Ac) and Adj(Ac,Bc) could be larger than Aut(Ac) and Isom(Ac,Bc), so they are
less useful from the practical viewpoint.

2. The second place is step 2 in Algorithm 2: instead of just using the first c matrices as
in the algorithm presented in Algorithm 1, Algorithm 2 slices the m matrices of A into
bm/cc segments of c-tuples of matrices, and tries each segment until it finds one segment
with a small adjoint algebra. This step helps in improving the average-case analysis, and
can be applied to the algorithm presented in Algorithm 1 as well.

I Proposition 12. Algorithm 2 runs in time poly(qcm, s, n).

Proof. If Algorithm 2 outputs “A does not satisfy the generic condition.”, then it just
executes the For-loop in Step 2, which together runs in time poly(m,n, log q).

Otherwise, there are two For-loops at Step 4 and Step 4c, which add multiplicative factors
qcm and s, respectively. Other steps can be carried out in time poly(n, log q). Therefore the
whole algorithm runs in time poly(qcm, s, n). J

We prove the correctness of Algorithm 2 in the case that it does not report “A does not
satisfy the generic condition.”
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Algorithm 2 The second average-case algorithm for AltMatSpIso.
Input: A = (A1, . . . , Am),B = (B1, . . . , Bm) ∈ Λ(n, q)m and c, s ∈ N.
Output: Either (1) “A does not satisfy the generic condition.”; or (2) ΨIsom(A,B) as a set

L, which may be empty.
Algorithm procedure:

1. Set L← {}. Set F ← false.
2. For i = 1, . . . , bm/cc, do the following.
(a) Set Ac = (Ac(i−1)+1, . . . , Aci).
(b) Compute a linear basis of Adj(Ac) ⊆ M(n, q)⊕M(n, q).
(c) If |Adj(Ac)| 6 s, set F to be true, and break the For-loop.

3. If F = false, return “A does not satisfy the generic condition.” and terminate.
Otherwise,

4. Set B = span{B1, . . . , Bm}; for every Bc = (B1, . . . , Bc) ∈ Bc, do the following.
(a) Compute a linear basis for Adj(Ac,Bc) ⊆ M(n, q)⊕M(n, q).
(b) If |Adj(Ac,Bc)| > s, go to the next Bc.
(c) For every (T, T ′) ∈ Adj(Ac,Bc), do the following.

If T and T ′ are invertible and (T ′)−1 = T t, test whether the linear spans of
TAT t and B are the same. If not, go to the next (T, T ′). If so, add T t into L.

5. Output L.

I Proposition 13. Suppose that Algorithm 2 does not report “A does not satisfy the generic
condition.” Then the algorithm lists the (possibly empty) set of pseudo-isometries between A
and B. In particular, |ΨIsom(A,B)| 6 qcm · s.

Proof. By Step 4c, every T t added to L is a pseudo-isometry. So we are left to show that L
contains all the pseudo-isometries. For this, take an arbitrary pseudo-isometry T . Then T
sends Ac to some Bc ∈ Bc, i.e., T tAcT = Bc. In particular, (T t, T−1) ∈ Adj(Ac,Bc). So
when enumerating this Bc ∈ Bc, (T t, T−1) will pass all the tests in the following, and T will
be be added to L. J

Now we specify the choice of c = 20 and s = qn, based on Theorem 5.

I Proposition 14. Let m > c = 20, and let ` = bm/cc ∈ N. For all but at most q−Ω(n·`) =
q−Ω(nm) fraction of A = (A1, . . . , Am) ∈ Λ(n, q)m, there exists some i ∈ [`], such that, letting
Ac,i = (Ac(i−1)+1, . . . , Aci), we have |Adj(Ac,i)| 6 qn.

Proof. We slice A into ` = bm/cc segments, where each segment consists of c random
alternating matrices. Each segment is some Ac,i ∈ Λ(n, q)c, with Pr[|Adj(Ac,i)| > qn] 6
q−Ω(n) by Theorem 5. Since A1, . . . , Am are chosen independently and uniformly at random,
the probability of every Ac,i = (Ac(i−1)+1, . . . , Aci), i ∈ [`], with |Adj(Ac,i)| > qn, is upper
bounded by (q−Ω(n))` = q−Ω(nm). J

Theorem 1 then follows from Propositions 12 to 14.
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