Average-case Algorithm for Testing
Pseudo-isometry of Alternating Matrix Tuples

Peter A. Brooksbank, Joshua A. Grochow,
Yinan Li,

Youming Qiao, James B. Wilson

Full version (arXiv:1905.02518):
Incorporating Weisfeiler-Leman into algorithms for group isomorphism

21.11.2019
B\ngk{l].e,l\l @‘ Un:ilfrlty of Colorado g:‘é UT s Co]0§gm .
v DuSoft

ica Research Center for Quantum Software

Alternating Matrix Tuples

A€ N(n,q) VAV =0V v e TF]
G,H € A(n,q)™ | m-tuples of n x n alternating matrices over F,
GL(n, q) The general linear group of degree n over I
0 1 0 0] fo o 00 0 0 0 1
G = -1 0 0 O 0 0 1 0 0 0 0 O
o o o0 o 1/’f0 -1 0 0O|’J]O0O 0 O O
0 0 -1 0] [0 0O O O -1 0 0 O
0 -1 0 -2] [0 1 -1 O 0 -1 0 -1
H = 1 0 1 O -1 0 -1 -1 1 0 0 -1
- 0 -1 0 -1’1 1 O 1|10 0 0 O
2 0 1 o]0 1 -1 of [t 1 0 O

Alternating Matrix Tuples

A€ N(n,q) ViAv =0V v € Fj
G,H € A(n,q)™ | m-tuples of n x n alternating matrices over F,
GL(n, q) The general linear group of degree n over I,

G and H are isometric if and only if

3T € GL(n,q), st. T'GT = (TG T,..., TGy T) = H.

Alternating Matrix Tuples

A e N(n,q) VAV =0V v e F]
G,H € A(n,q)™ | m-tuples of n x n alternating matrices over F,
GL(n, q) The general linear group of degree n over I

G and H are isometric if and only if

3T € GL(n, q), s.t. T'GT = (T'GT,..., T'G,T) = H.

Tt G T
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1
1 0 1 1 —1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1
0 1 0 0 0 0 0 1{’ 10 —1 0 o’ o 0 0 0 1 1 0 1
1 1 1 0 0 0 —1 0 0 0 0 0 —1 0 0 0 1 1 0 0

~ool
-
cocoo
oco |l |
(SR
[
N————

Alternating Matrix Tuples

A€ N(n,q) VAV =0V v € Fj
G,H € A(n,q)™ | m-tuples of n x n alternating matrices over F,
GL(n, q) The general linear group of degree n over I,

G and H are isometric if and only if
aT € GL(n,q), st. T'"GT =(T'G T,..., T'G,T) =H.
G and H are pseudo-isometric if and only if

3T € GL(n, q), the linear span of T!GT and H are the same.

Alternating Matrix Tuples

A€ N(n,q) VAV =0V v e}
G,H € A(n,q)™ | m-tuples of n x n alternating matrices over F
GL(n, q) The general linear group of degree n over Fq

G and H are isometric if and only if
T € GL(n,q), st. T'"GT = (TG T,..., T'G,T) = H.
G and H are pseudo-isometric if and only if
T € GL(n, q), the linear span of T!GT and H are the same.

Tt
0o 1 1 1 0 1 0 0 0 0 0 0 0 0o 0 1 0o 1 0 1
1 0 1 1 -1 0 0 0 0 0 1 0 0 0O 0 O 1 0 1 1
0o 1 0 O 0 0 0 if’jo -1 0 o0|’]0 0O 0 O 1 1 0 1
1 1 1 o0 0 o -1 0 0 0 0 0 -1 0 0 o©0 1 1 0 0

0o 0 -1 -2 0 -2 0 -3 0o 0 -1 -1

_ 0 0 0 -1 2 0 1 -1 0o 0 -1 -2

- 1 0 0 o|’|0 -1 0 -1’1 1 0 1

2 1 0 0 -3 1 1 0 1 2 -1 0

Alternating Matrix Tuples

A€ N(n,q) ViAv =0V v € Iy
G,H € A(n,q)™ | m-tuples of n x n alternating matrices over F,
GL(n, q) The general linear group of degree n over I,

G and H are isometric if and only if
aT € GL(n,q), st. T'"GT =(T'G T,..., T'G,T) =H.
G and H are pseudo-isometric if and only if

3T € GL(n, q), the linear span of T!GT and H are the same.

(Pseudo-)lsometry Testing:

Given G,H € A(n,q)™, determine whether G and H are
(pseudo-)isometric.

Why should we care about pseudo-isometry testing
of alternating matrix tuples?

p-groups and Alternating Matrix Tuples

Let G be a p-group of class 2 and exponent p of order p’ (p odd).
» Class (at most) 2: [G,G] < Z(G)={ge G:gg' =g'gV g’ € G}.
» Abelian groups are class 1: [G, G] = {1}.
» exponent p: gP =1V g€ G.

p-groups and Alternating Matrix Tuples
Let G be a p-group of class 2 and exponent p of order p’ (p odd).
The commutator map ®¢ : G/[G, G] x G/[G, G] — [G, G]:

(g1, 82) = g1, 8], V g1,8 € G/[G, G]

is alternating:
®c(g,8) =e Vg€ G/[G,G].

p-groups and Alternating Matrix Tuples
Let G be a p-group of class 2 and exponent p of order p’ (p odd).
The commutator map ®¢ : G/[G, G] x G/[G, G] — [G, G]:

(g1, 82) = g1, 8], V g1,8 € G/[G, G]

is alternating:
®c(g,8) =e Vg€ G/[G,G].

Note: G/[G, G] = (Z/pZ)" =y}, [G, G] = (Z/pZ)™ =F] (m+n=1{).

(The isomorphisms correspond to distinguish basis of (Z/pZ)" and
(Z/pZ)™.) &g : Fy x Fp — T is an alternating bilinear map.

p-groups and Alternating Matrix Tuples

Let G be a p-group of class 2 and exponent p of order p’ (p odd).
The commutator map ®¢ : G/[G, G] x G/[G, G] — [G, G]:

(g1, 82) = g1, 8], V g1,8 € G/[G, G]

is alternating:
®c(g,8) =e Vg€ G/[G,G].

Note: G/[G, G] = (Z/pZ)" =y}, [G, G] = (Z/pZ)™ =F] (m+n=1{).

(The isomorphisms correspond to distinguish basis of (Z/pZ)" and
(Z/pZ)™.) &g : Fy x Fp — T is an alternating bilinear map.

b6 Fy xFy = F) < G=(A1,...,An) € N(n,p)"

p-groups and Alternating Matrix Tuples

Let G be a p-group of class 2 and exponent p of order p’ (p odd).
The commutator map ®¢ : G/[G, G] x G/[G, G] — [G, G]:

(g1, 82) = g1, 8], V g1,8 € G/[G, G]

is alternating:
®c(g,8) =e Vg€ G/[G,G].

Note: G/[G, G] = (Z/pZ)" =y}, [G, G] = (Z/pZ)™ =F] (m+n=1{).

(The isomorphisms correspond to distinguish basis of (Z/pZ)" and
(Z/pZ)™.) &g : Fy x Fp — T is an alternating bilinear map.

b6 Fy xFy = F) < G=(A1,...,An) € N(n,p)"

[Baer 1938]: G; = G, & G4 and G are pseudo-isometric.

The Group Isomorphism Problem

The Group Isomorphism Problem:
Given two groups G and H of order n, decide whether they are
isomorphic.

G = H if there exists a bijective map ¢ : G — H, such that
Vg1,8 € G, ¢(giog)=dg) * 4(g)

The Group Isomorphism Problem

The Group Isomorphism Problem:
Given two groups G and H of order
isomorphic.

n, decide whether they are

In computation, the groups are given as t

1
11
il
J |

—_| | x| x

x| | =] -
Y PR PR P

k| k|j|]il1
Cayley table of the Klein four-group

he Cayley table:

» Sparse input model (O(log n)):
permutations, matrices, or
black-box groups. (used in CGT)

» Undecidable, if given by
generators and their relations.
[Adian 1957, Rabin 1958]

The Group Isomorphism Problem

The Group Isomorphism Problem:
Given two groups G and H of order n, decide whether they are

isomorphic.

In computation, the groups are given as the Cayley table:

= x|
—|— x| =

1]
1[1]i
i[i]1
i1k

k| k|j|il1
Cayley table of the Klein four-group

» Input size of G: n°.

The Group Isomorphism Problem

The Group Isomorphism Problem:
Given two groups G and H of order n, decide whether they are

isomorphic.

In computation, the groups are given as the Cayley table:

T[i]]]k
11| i]]k
i i1 k][]
T Tk
k| k|j i1

Cayley table of the Klein four-group
» Input size of G: n°.
» “Efficient” algorithm: poly(n) steps.

The Group Isomorphism Problem

The Group Isomorphism Problem:
Given two groups G and H of order n, decide whether they are

isomorphic.

In computation, the groups are given as the Cayley table:

T[i]]]k
11| i]]k
i i1 k][]
T Tk
k| k|j i1

Cayley table of the Klein four-group
» Input size of G: n?.
» “Efficient” algorithm: poly(n) steps.
> Current best algorithm: n©(°e(") steps (Quasipolynomial).

The Group Isomorphism Problem

The Group Isomorphism Problem:
Given two groups G and H of order n, decide whether they are

isomorphic.

In computation, the groups are given as the Cayley table:

=X
== x| x

1]
1[1]i
i[i]1
i1k

k| k|j|il1
Cayley table of the Klein four-group

» Input size of G: n?.

» “Efficient” algorithm: poly(n) steps.

> Current best algorithm: n©(°e(") steps (Quasipolynomial).
» Efficient algorithm for abelian groups.

>

Barely improved from the brute-force algorithm for class 2 groups of
exponent p. (Believed hard instance)

Algorithms for Pseudo-isometry Testing

Pseudo-isometry Testing:
Given G,H € A(n,q)™, decide whether G and H are pseudo-
isometric.

» Testing isomorphism for p-groups of class 2 and exponent p in
polynomial time reduces to testing pseudo-isometry in time g@(").

Algorithms for Pseudo-isometry Testing

Pseudo-isometry Testing:
Given G,H € A(n,q)™, decide whether G and H are pseudo-
isometric.

» Testing isomorphism for p-groups of class 2 and exponent p in
polynomial time reduces to testing pseudo-isometry in time g@(").

» Brute-force: q"2po|y(n, m, log q).

Algorithms for Pseudo-isometry Testing

Pseudo-isometry Testing:

Given G,H € A(n,q)™, decide whether G and H are pseudo-
isometric.

» Testing isomorphism for p-groups of class 2 and exponent p in
polynomial time reduces to testing pseudo-isometry in time g@(").

» Brute-force: q"2po|y(n, m, log q).

» Pseudo-isometry Testing should not be NP-hard under standard
complexity assumptions (PH does not collapse to the second level).

Algorithms for Pseudo-isometry Testing

Pseudo-isometry Testing:
Given G,H € A(n,q)™, decide whether G and H are pseudo-
isometric.

» Testing isomorphism for p-groups of class 2 and exponent p in
polynomial time reduces to testing pseudo-isometry in time g@(").

» Brute-force: q"2po|y(n, m, log q).
» Pseudo-isometry Testing should not be NP-hard under standard
complexity assumptions (PH does not collapse to the second level).
» Slightly better bounds for pseudo-isometry testing:
> gi(rtm) +0(ntm) for prime g > 3 [Rosenbaum 13]
> q%(n2+m2)+0(n+m) [Li-Qiao 17]

Algorithms for Pseudo-isometry Testing

Pseudo-isometry Testing:
Given G,H € A(n,q)™, decide whether G and H are pseudo-
isometric.

» Testing isomorphism for p-groups of class 2 and exponent p in
polynomial time reduces to testing pseudo-isometry in time g@(").

» Brute-force: q"2po|y(n, m, log q).
» Pseudo-isometry Testing should not be NP-hard under standard
complexity assumptions (PH does not collapse to the second level).
» Slightly better bounds for pseudo-isometry testing:
> gi(rtm) +0(ntm) for prime g > 3 [Rosenbaum 13]
> q%(n2+m2)+0(n+m) [Li-Qiao 17]
» Isometry testing for alternating matrix tuples can be done in
poly(n, m, q) for odd g [Brooksbank-Wilson 12, Ivanyos-Qiao 18].

Relations with Other Isomorphism Problems

Tl-complete’t Tl-complete
,,,,,,,, i S

: SYMMETRIC | MATRIX |

| d-TENSOR } p-Group Iso. d-TENSOR Iso. }

| DIAGONAL Iso. 1 (class 2, exp. p) I

: tr | [Bae3s] |

| : [FGs19] [Fas19] :

DEGREE-d ArT. MAT. —> ~<—— MAT. SPACE Thm. B

' PorM B s I 3-TENSOR Iso. c . I

1 Q. [Aso] ACE IsQM. F—7 ThA ONJ. |

I

| Prop. A 1T irasio)t . lpmpv D :

: Cusic Form 22:-4° ™ RinG Iso. Prop. 3.6 MAT. ASSOC. MAT. LIE I
|

! |
|
I
|
I
|

Eq. o5, A506) (basis) Avrc. CoNJ. ALg. ConJ.
Lo [H\’\ »]
RinG Iso. UNITAf ComMM. MAT.
(gens /’relsj Assoc. ALG. LiE ALG.
! ! [AS05,KS06] Iso. CoNg
e N O = |
) [R6n8s] Mon\ CobE SEMISIMPLE Diac. MAT.
[A509] (over Q)% N MAT. LIE LIE ALG.
o (Gro12a] ALG. Cony. Cony.
;/[f;nlu] ‘%uz(x]
FACTORING STRING a1 PerM. CODE PERM.
INTEGERS ISOMORPHISM [Luks2], [PR97, Luk93] EqQ. [B0GQ1] Group CONJ.
of. [Lukoz]
(Classical, cf. [ZKT85])
. Mar.)
Arr. MAT (Bacas] p-GroupP Iso GROUP TS0,
SPACE IsoM. <—— (class 2, exp. p, — (table)
(F,e, verbose) table) .

Conclude in [Grochow-Qiao 2019].
Problem A — B means a polynomial-time algorithm of problem B can also
solve problem A in polynomial time.

Average-case Algorithm

» Work for “almost all” instances sampled from a certain
random model.

Average-case Algorithm

» Work for “almost all” instances sampled from a certain
random model.

Random Graph Isomorphism [Babai-Erd8s-Selkow 80]
For almost all graphs in the Erdés-Rényi model, testing iso-
morphism with any graph can be done in linear time.

Average-case Algorithm

» Work for “almost all” instances sampled from a certain
random model.

Random Graph Isomorphism [Babai-Erd8s-Selkow 80]
For almost all graphs in the Erdés-Rényi model, testing iso-
morphism with any graph can be done in linear time.

nauty and Traces

Brendan McKay and Adolfo Piperno

GRAPH CANONICAL LABELING AND
AUTOMORPHISM GROUP COMPUTATION

Average-case Algorithm for Pseudo-isometry Testing

Theorem

For all but at most 1/g*("™) fraction of G € A(n,q)™ , there

is an algorithm which tests pseudo-isometry of G with an
arbitrary H € A(n, q)™ in time g9("+m),

Average-case Algorithm for Pseudo-isometry Testing

Theorem

For all but at most 1/¢("™) fraction of G € A(n,)™ , there
is an algorithm which tests pseudo-isometry of G with an
arbitrary H € A(n, q)™ in time g9("+m),

The random model: Choose the strictly upper
0 X12 X13 X4

—x12 0 X23 X24
—x13 —Xx23 0 X34
—X14 —X24 —Xx34 O

triangular parts from Fg independently and
uniformly at random. Set the diagonal entries
to 0, and the lower triangular entries according

to the upper triangular ones.

Average-case Algorithm for Pseudo-isometry Testing

Theorem

For all but at most 1/¢("™) fraction of G € A(n,)™ , there
is an algorithm which tests pseudo-isometry of G with an
arbitrary H € A(n, q)™ in time g9("+m),

The random model: Choose the strictly upper
0 X12 X13 X4

—x12 0 X23 X24
—x13 —Xx23 0 X34
—X14 —X24 —Xx34 O

triangular parts from Fg independently and
uniformly at random. Set the diagonal entries
to 0, and the lower triangular entries according

to the upper triangular ones.

Practically Implemented using Magma. :: — — ==='
(https://github.com /thetensor-space).

Key idea about Average-case Algorithms

» Define “easy to check” properties which hold for “almost all”
objects sampled from the random model.

P> For objects satisfying these properties, isomorphism can be
checked “efficiently”.

Individualizing Alternating Matrix Tuples

Observation: If T is a pseudo-isometry from G to H, for
every ¢ € [m], T is an isometry from (Gy,..., G.) to some
(Hi, ..., H.) in (H)C.

Individualizing Alternating Matrix Tuples

Observation: If T is a pseudo-isometry from G to H, for
every ¢ € [m], T is an isometry from (Gy, ..., G:) to some
(Hi, ..., H.) in (H)C.

To test pseudo-isometry, fix the images of Gy, ..., Gc.
(G, -+ G
\ \

(Hi, - H) e(H)*

Individualizing Alternating Matrix Tuples

Observation: If T is a pseudo-isometry from G to H, for
every ¢ € [m], T is an isometry from (Gy, ..., G:) to some
(Hi, ..., H.) in (H)C.

To test pseudo-isometry, fix the images of Gy, ..., Gc.
(G, -+ G
\ \
(Hi, - H) e(H)

Identify the isometry T € GL(n, q):
(T'GiT,...,T'G.T) = (H;,..., H.),

check if T is a pseudo-isometry between G and H. (By solving
linear equations.)

The Main Algorithm

Theorem ([Brooksbank-Wilson 12, Ivanyos-Qiao 18])

Testing isometry of alternating matrix tuples in A(n,g)™ can be
done in time poly(n, m, q) when ¢ is odd.

% The outputs are a coset representative and a set of generators.

The Main Algorithm

Theorem ([Brooksbank-Wilson 12, Ivanyos-Qiao 18])

Testing isometry of alternating matrix tuples in A(n,g)™ can be
done in time poly(n, m, g) when g is odd.

% The outputs are a coset representative and a set of generators.

Pseudo-isometry Testing for odd g
Input: G = (Gi,...,Gn),H=(Hi,...,Hn) € A(n,q)", constant c.
» Enumerate all c-tuples Hc in (Hi,..., Hn);
» For each H. = (Hj, ..., H.), test isometry with G. = (G, .., G.);

» If they are isometric, check whether every isometry T is also a
pseudo-isometry between G and H.

The Main Algorithm

Theorem ([Brooksbank-Wilson 12, Ivanyos-Qiao 18])

Testing isometry of alternating matrix tuples in A(n,g)™ can be
done in time poly(n, m, g) when g is odd.

% The outputs are a coset representative and a set of generators.

Pseudo-isometry Testing for odd g

Input: G = (Gi,...,Gn),H=(Hi,...,Hn) € A(n,q)", constant c.
» Enumerate all c-tuples Hc in (Hi,..., Hn);
» For each H. = (Hj, ..., H.), test isometry with G. = (G, .., G.);
» If they are isometric, check whether every isometry T is also a

pseudo-isometry between G and H.

Running time is dominated by two For-loops:

The Main Algorithm

Theorem ([Brooksbank-Wilson 12, Ivanyos-Qiao 18])

Testing isometry of alternating matrix tuples in A(n,g)™ can be
done in time poly(n, m, g) when g is odd.

% The outputs are a coset representative and a set of generators.

Pseudo-isometry Testing for odd g
Input: G = (Gi,...,Gn),H=(Hi,...,Hn) € A(n,q)", constant c.
» Enumerate all c-tuples Hc in (Hi,..., Hn);
» For each H. = (Hj, ..., H.), test isometry with G. = (G, .., G.);
» If they are isometric, check whether every isometry T is also a
pseudo-isometry between G and H.
Running time is dominated by two For-loops:
» Enumerate c-tuples: ¢°". % H! = a;j1Hi + -+ + @i mHpm for i € [c]

The Main Algorithm

Theorem ([Brooksbank-Wilson 12, Ivanyos-Qiao 18])

Testing isometry of alternating matrix tuples in A(n,g)™ can be
done in time poly(n, m, g) when ¢ is odd.

% The outputs are a coset representative and a set of generators.

Pseudo-isometry Testing for odd g
Input: G = (Gi,...,Gn),H=(Hi,...,Hn) € A(n,q)", constant c.
» Enumerate all c-tuples Hc in (Hi,..., Hn);
» For each H. = (Hj, ..., H.), test isometry with G. = (G, .., G.);
» If they are isometric, check whether every isometry T is also a
pseudo-isometry between G and H.
Running time is dominated by two For-loops:
» Enumerate c-tuples: ¢°". % H! = a;j1Hi + -+ + @i mHpm for i € [c]

> Enumerate Isometries: For each H, [{T € GL(n,q) : T'G. T = H.}|.

The Main Algorithm

Theorem ([Brooksbank-Wilson 12, Ivanyos-Qiao 18])

Testing isometry of alternating matrix tuples in A(n,g)™ can be
done in time poly(n, m, g) when g is odd.

% The outputs are a coset representative and a set of generators.

Pseudo-isometry Testing for odd ¢
Input: G = (Gy,...,Gpn),H=(Hi,...,Hn) € A(n,q)", constant c.
» Enumerate all c-tuples Hc in (Hi,..., Hn);
» For each H = (Hj, ..., H.), test isometry with G. = (G,..., G.);
» If they are isometric, check whether every isometry T is also a
pseudo-isometry between G and H.
Running time is dominated by two For-loops:
» Enumerate c-tuples: ¢°". % H! = aj1Hi + -+ + i mHp for i € [c]
{T € GL(n,q) : T'G.T = H.}|.

» Enumerate Isometries: For each H,

VY He, {T € GL(n,q) : T'G.T = H.}|< q°" = time bound ¢°"t™.]

Given G = (G, ...,Gn),H=(H1,...,Hn) € N(n,q)™,
VH. € (H)S, {T € GL(n,q) : T!G.T = H.}|< ¢°"

is not true in general.

Given G = (G, ...,Gn),H=(H1,...,Hn) € N(n,q)™,
VH. € (H)S, {T € GL(n,q) : T!G.T = H.}|< ¢°"

is not true in general.

But it holds for any G chosen uniformly at random!

Average-case Analysis: Adjoint Algebra

Observation: For every H,,

HT € GL(n,q): T'G. T =H.}| < |{T € GL(n,q) : T'G.T = G.}|

Coset Autometry group

Claim:
For a random G € A(n, g)™, with high probability we have

|Autm(G.)| = [{T € GL(n,q) : T'G.T = G.}| < g%,

Average-case Analysis: Adjoint Algebra

Observation: For every H,,
HT € GL(n,q): T'G. T =H.}| < {T € GL(n,q) : T'G.T = G.}|

Coset Autometry group

Claim:
For a random G € A(n, g)™, with high probability we have

|Autm(G.)| = {T € GL(n, q) : T'G.T = G}| < q°".

Random graphs have automorphism group size O(1) with high
probability [Erdés-Rényi 1963]

Average-case Analysis: Adjoint Algebra

Observation: For every H,,

HT € GL(n,q): T'G. T =H.}| < |{T € GL(n,q) : T'G.T = G.}|

Coset Autometry group

Claim:
For a random G € A(n, g)™, with high probability we have

|Autm(G.)| = [{T € GL(n,q) : T'G.T = G.}| < g%,

The adjoint algebra and adjoint space:
Adj(Ge) = {(A,D) € M(n,q) @ M(n,q) : AG. = G.D}.
Adj(G, He) = {(A, D) €e M(n,q) ® M(n,q) : AG. = H.D}.

Average-case Analysis: Adjoint Algebra

Observation: For every H,,

HT € GL(n,q): T'G. T =H.}| < |{T € GL(n,q) : T'G.T = G.}|

Coset Autometry group

Claim:
For a random G € A(n, g)™, with high probability we have

|Autm(G.)| = [{T € GL(n,q) : T'G.T = G.}| < g%,

The adjoint algebra and adjoint space:
Adj(Ge) = {(A,D) € M(n,q) @ M(n,q) : AG. = G.D}.
Adj(G, He) = {(A,D) € M(n, q) ® M(n, q) : AG. = H.D}.
> |Autm(G.)| < |Adj(Ge)| as T € Autm(G.) = (T%, T71) € Adj(G.).
» If G and H. are isometric, |Adj(Gc, H¢)| = |Adj(G.)]

» Can be efficiently computed by solving systems of linear equations.

Average-case Analysis: Stable Alternating Tuples

Stable (Alternating) matrix tuple:

For every nontrivial subspace U of FZ,

dim(G(V)) = dim((GLU, ..., G.U)) > dim(U).

% The stable concept comes from geometric invariant theory.

Average-case Analysis: Stable Alternating Tuples

Stable (Alternating) matrix tuple:

For every nontrivial subspace U of FZ,

dim(G(V)) = dim((GLU, ..., G.U)) > dim(U).

% The stable concept comes from geometric invariant theory.

» |If G, is stable, then every nonzero elements in Adj(G.) is invertible.
(Exercise!)

Average-case Analysis: Stable Alternating Tuples

Stable (Alternating) matrix tuple:

For every nontrivial subspace U of FZ,

dim(G(V)) = dim((GLU, ..., G.U)) > dim(U).

% The stable concept comes from geometric invariant theory.

» |If G, is stable, then every nonzero elements in Adj(G.) is invertible.
(Exercise!)

> Adj(G.) is a finite division algebra over F4 which contains identity.

Average-case Analysis: Stable Alternating Tuples

Stable (Alternating) matrix tuple:

For every nontrivial subspace U of FZ,

dim(G(V)) = dim((GLU, ..., G.U)) > dim(U).

% The stable concept comes from geometric invariant theory.

» |If G, is stable, then every nonzero elements in Adj(G.) is invertible.
(Exercise!)

> Adj(G.) is a finite division algebra over F4 which contains identity.

» Adj(G.) is a field by Wedderburn's little theorem. And we can
conclude

[Theorem: G, is stable = |Adj(G.)| < ¢".]

Upper Bound the Probability of being Unstable

Claim: With probability 1 — , a random G¢ is stable.

Upper Bound the Probability of being Unstable

Claim: With probability 1 — , a random G¢ is stable.
» Convert 4 random alternatmg matrices into 1 random matrix.

» Upper bound the probability of a random tuple of 5 matrices
being nonstable.

Upper Bound the Probability of being Unstable

Claim: With probability 1 — , a random G¢ is stable.
» Convert 4 random alternatlng matrices into 1 random matrix.

» Upper bound the probability of a random tuple of 5 matrices
being nonstable.

Theorem:
For ¢ > 20, with probability 1— , arandom G. € A(n, q)°

satisfies [Autm(G.)| < g).

The Main Algorithm, Revisited

Pseudo-isometry testing for odd g
Input: G = (Gy,...,Gn),H= (H,...,Hn) € A(n,q)", constant c.
» Enumerate all c-tuples in (Hi,..., Hn);
» For each H. = (Hj, ..., H.), test isometry with G. = (G, ..., G.);

P If they are isometric, check whether every isometry T is also a
pseudo-isometry between G and H.

The Main Algorithm, Revisited

Pseudo-isometry testing for odd g
Input: G = (Gi,...,Gn),H=(H,...,Hn) € A(n,q)", constant ¢ > 20.

>

>
>
>
>

Compute a generating set of Autm(G.);

If [Autm((Gi, ..., Gc))| > q", terminate;

Enumerate all c-tuples in (Hi, ..., Hm);

For each H = (Hy, ..., H.), test isometry with G. = (Gy, ..., G.);

If they are isometric, check whether every isometry T is also a
pseudo-isometry between G and H.

The Main Algorithm, Revisited

Pseudo-isometry testing for odd g
Input: G = (Gi,...,Gn),H=(H,...,Hn) € A(n,q)", constant ¢ > 20.

» Compute a generating set of Autm(G.);

» If [Autm((Gi, ..., Gc))| > g, terminate;

» Enumerate all c-tuples in (Hi,..., Hp);

» For each H. = (Hj, ..., H.), test isometry with G. = (G, .., G.);
» If they are isometric, check whether every isometry T is also a

pseudo-isometry between G and H.

Theorem
For odd g and m > 20, the above algorithm tests pseudo-isometry for almost
but n) fraction of G € A(n,)™ with arbitrary H € A(n, g)" in time qOlrtm)

The Main Algorithm, Revisited

Pseudo-isometry testing for odd g

Input: G = (Gi,...,Gn),H=(H,...,Hn) € A(n,q)", constant ¢ > 20.
» Compute a generating set of Autm(G.);

If [Autm((Gi, ..., Gc))| > q", terminate;

Enumerate all c-tuples in (Hi, ..., Hm);

For each H = (Hy, ..., H.), test isometry with G. = (Gy, ..., G.);

If they are isometric, check whether every isometry T is also a
pseudo-isometry between G and H.

>
>
>
>

Theorem
For odd g and m > 20, the above algorithm tests pseudo-isometry for almost
but n) fraction of G € A(n,)™ with arbitrary H € A(n, g)" in time qOlrtm)

» odd g = all g: Replace all isometry tests by computing adjoint algebra
and adjoint space.

The Main Algorithm, Revisited

Pseudo-isometry testing for odd g

Input: G = (Gi,...,Gn),H=(H,...,Hn) € A(n,q)", constant ¢ > 20.
» Compute a generating set of Autm(G.);

If [Autm((Gi, ..., Gc))| > q", terminate;

Enumerate all c-tuples in (Hi, ..., Hm);

For each H = (Hy, ..., H.), test isometry with G. = (Gy, ..., G.);

If they are isometric, check whether every isometry T is also a
pseudo-isometry between G and H.

>
>
>
>

Theorem
For odd g and m > 20, the above algorithm tests pseudo-isometry for almost
but n) fraction of G € A(n,)™ with arbitrary H € A(n, g)" in time qOlrtm)

» odd g = all g: Replace all isometry tests by computing adjoint algebra
and adjoint space

1
> o = Q(nm) Enumerate all c-tuples of G until one stable tuple is

Practical Implementation

Implementation Trick:

» Tolerable enumeration in a laptop: 5°.

Practical Implementation

Implementation Trick:

» Tolerable enumeration in a laptop: 5°.

» Solution: ¢ = 3 is normally sufficient in practice.

Practical Implementation

Implementation Trick:
» Tolerable enumeration in a laptop: 5.
» Solution: ¢ = 3 is normally sufficient in practice.

» Reduce the enumeration cost: Choose low-rank matrices.
% When q is small, #low-rank matrices in a random alternating tuple is

expected to be much smaller than ¢™ and no less than 3.

Practical Implementation

Implementation Trick:
» Tolerable enumeration in a laptop: 5°.
» Solution: ¢ = 3 is normally sufficient in practice.
» Reduce the enumeration cost: Choose low-rank matrices.
% When q is small, #low-rank matrices in a random alternating tuple is
expected to be much smaller than ¢™ and no less than 3.
Experiments:
» Randomly generate G, H € A(5,3)* and test isometry.
» Randomly generate G € A(5,3)* and T € GL(5,3) and test
isometry between G and T!GT.

Practical Implementation

Implementation Trick:
» Tolerable enumeration in a laptop: 5°.
» Solution: ¢ = 3 is normally sufficient in practice.

» Reduce the enumeration cost: Choose low-rank matrices.
% When q is small, #low-rank matrices in a random alternating tuple is
expected to be much smaller than ¢™ and no less than 3.
Experiments:
» Randomly generate G, H € A(5,3)* and test isometry.

» Randomly generate G € A(5,3)* and T € GL(5,3) and test
isometry between G and T!GT.

Brute-force: Fail to complete. % 5'° < 325

Practical Implementation

Implementation Trick:
» Tolerable enumeration in a laptop: 5°.
» Solution: ¢ = 3 is normally sufficient in practice.

» Reduce the enumeration cost: Choose low-rank matrices.
% When q is small, #low-rank matrices in a random alternating tuple is
expected to be much smaller than ¢™ and no less than 3.
Experiments:
» Randomly generate G, H € A(5,3)* and test isometry.

» Randomly generate G € A(5,3)* and T € GL(5,3) and test
isometry between G and T!GT.

Brute-force: Fail to complete. % 5'° < 325

Our (Modified) Algorithm: Complete with correct answer in 2
minutes.

Practical Implementation

Implementation Trick:
» Tolerable enumeration in a laptop: 5°.
» Solution: ¢ = 3 is normally sufficient in practice.

» Reduce the enumeration cost: Choose low-rank matrices.
% When q is small, #low-rank matrices in a random alternating tuple is
expected to be much smaller than ¢™ and no less than 3.
Experiments:
» Randomly generate G, H € A(5,3)* and test isometry.

» Randomly generate G € A(5,3)* and T € GL(5,3) and test
isometry between G and T!GT.

Brute-force: Fail to complete. % 5'° < 325

Our (Modified) Algorithm: Complete with correct answer in 2
minutes.

Other results (not in this talk)

> A general strategy for group isomorphism which combines recent
algebraic techniques with the Weisfeiler-Leman refinement
technique for Graph Isomorphism.

» A new random model for finite groups, and average-case results to
support the “filter and WL" refinement.

» Worst-case polynomial-time algorithms for testing isomorphism of
groups with “genus-2 radicals”.

arXiv:1905.02518
Thanks for your Attention!

