Average-case Algorithm for Testing Pseudo-isometry of Alternating Matrix Tuples

Peter A. Brooksbank, Joshua A. Grochow, Yinan Li, Youming Qiao, James B. Wilson

Full version (arXiv:1905.02518): Incorporating Weisfeiler-Leman into algorithms for group isomorphism

21 11 2019

University of Colorado

Research Center for Quantum Software

Alternating Matrix Tuples

 $\begin{array}{c|c} A \in \Lambda(n,q) \\ \mathbb{G}, \mathbb{H} \in \Lambda(n,q)^m \\ \mathrm{GL}(n,q) \end{array} \begin{array}{c} v^t A v = 0 \ \forall \ v \in \mathbb{F}_q^n \\ m \text{-tuples of } n \times n \text{ alternating matrices over } \mathbb{F}_q \\ \end{array}$ The general linear group of degree n over \mathbb{F}_q

$$\mathbb{G} = \left(\begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \right)$$
$$\mathbb{H} = \left(\begin{bmatrix} 0 & -1 & 0 & -2 \\ 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 \\ 2 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & -1 & 0 \\ -1 & 0 & -1 & -1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \right)$$

$$\begin{array}{c|c} A \in \Lambda(n,q) \\ \mathbb{G}, \mathbb{H} \in \Lambda(n,q)^m \\ \mathrm{GL}(n,q) \end{array} \begin{array}{c|c} v^t A v = 0 \ \forall \ v \in \mathbb{F}_q^n \\ m \text{-tuples of } n \times n \text{ alternating matrices over } \mathbb{F}_q \\ \end{array}$$
The general linear group of degree n over \mathbb{F}_q

 $\mathbb G$ and $\mathbb H$ are isometric if and only if

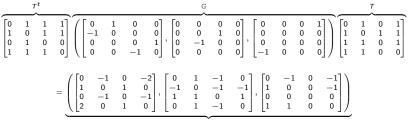
$$\exists T \in \mathsf{GL}(n,q), \text{ s.t. } T^t \mathbb{G} T = (T^t G_1 T, \ldots, T^t G_m T) = \mathbb{H}.$$

Alternating Matrix Tuples

 $\begin{array}{c|c} A \in \Lambda(n,q) \\ \mathbb{G}, \mathbb{H} \in \Lambda(n,q)^m \\ \mathrm{GL}(n,q) \end{array} \begin{array}{c} v^t A v = 0 \ \forall \ v \in \mathbb{F}_q^n \\ m \text{-tuples of } n \times n \text{ alternating matrices over } \mathbb{F}_q \\ \end{array}$ The general linear group of degree n over \mathbb{F}_q

 $\mathbb G$ and $\mathbb H$ are isometric if and only if

 $\exists T \in GL(n,q), \text{ s.t. } T^{t}\mathbb{G}T = (T^{t}G_{1}T, \ldots, T^{t}G_{m}T) = \mathbb{H}.$



$$\begin{array}{c|c} A \in \Lambda(n,q) & v^t A v = 0 \ \forall \ v \in \mathbb{F}_q^n \\ \mathbb{G}, \mathbb{H} \in \Lambda(n,q)^m & \text{m-tuples of } n \times n \text{ alternating matrices over } \mathbb{F}_q \\ \text{GL}(n,q) & \text{The general linear group of degree } n \text{ over } \mathbb{F}_q \end{array}$$

 $\mathbb G$ and $\mathbb H$ are isometric if and only if

$$\exists T \in GL(n,q), \text{ s.t. } T^{t}\mathbb{G}T = (T^{t}G_{1}T, \ldots, T^{t}G_{m}T) = \mathbb{H}.$$

 $\mathbb G$ and $\mathbb H$ are pseudo-isometric if and only if

 $\exists T \in GL(n,q)$, the linear span of $T^t \mathbb{G}T$ and \mathbb{H} are the same.

Alternating Matrix Tuples

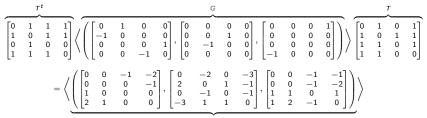
 $\begin{array}{c|c} A \in \Lambda(n,q) \\ \mathbb{G}, \mathbb{H} \in \Lambda(n,q)^m \\ \mathrm{GL}(n,q) \end{array} \begin{array}{c} v^t A v = 0 \ \forall \ v \in \mathbb{F}_q^n \\ m \text{-tuples of } n \times n \text{ alternating matrices over } \mathbb{F}_q \\ \end{array}$

$\mathbb G$ and $\mathbb H$ are isometric if and only if

 $\exists T \in GL(n,q), \text{ s.t. } T^{t}\mathbb{G}T = (T^{t}G_{1}T, \ldots, T^{t}G_{m}T) = \mathbb{H}.$

 $\mathbb G$ and $\mathbb H$ are pseudo-isometric if and only if

 $\exists T \in GL(n,q)$, the linear span of $T^t \mathbb{G}T$ and \mathbb{H} are the same.



Alternating Matrix Tuples

 $\begin{array}{c|c} A \in \Lambda(n,q) \\ \mathbb{G}, \mathbb{H} \in \Lambda(n,q)^m \\ \mathrm{GL}(n,q) \end{array} \begin{array}{c} v^t A v = 0 \ \forall \ v \in \mathbb{F}_q^n \\ m \text{-tuples of } n \times n \text{ alternating matrices over } \mathbb{F}_q \\ \end{array}$ The general linear group of degree n over \mathbb{F}_q

 $\mathbb G$ and $\mathbb H$ are isometric if and only if

$$\exists T \in \mathsf{GL}(n,q), \text{ s.t. } T^t \mathbb{G} T = (T^t G_1 T, \ldots, T^t G_m T) = \mathbb{H}.$$

 $\mathbb G$ and $\mathbb H$ are pseudo-isometric if and only if

 $\exists T \in GL(n,q)$, the linear span of $T^t \mathbb{G}T$ and \mathbb{H} are the same.

(Pseudo-)Isometry Testing:

Given $\mathbb{G}, \mathbb{H} \in \Lambda(n, q)^m$, determine whether \mathbb{G} and \mathbb{H} are (pseudo-)isometric.

Why should we care about pseudo-isometry testing of alternating matrix tuples?

Let G be a p-group of class 2 and exponent p of order p^{ℓ} (p odd).

- ▶ Class (at most) 2: $[G,G] \leq Z(G) = \{g \in G : gg' = g'g \forall g' \in G\}.$
- Abelian groups are class 1: $[G, G] = \{1\}$.

• exponent
$$p: g^p = 1 \forall g \in G$$
.

Let G be a p-group of class 2 and exponent p of order p^{ℓ} (p odd). The commutator map $\Phi_G : G/[G,G] \times G/[G,G] \rightarrow [G,G]$:

$$\Phi_G(g_1, g_2) = [g_1, g_2], \ \forall \ g_1, g_2 \in G/[G, G]$$

is alternating:

$$\Phi_G(g,g) = e, \ \forall \ g \in G/[G,G].$$

Let G be a p-group of class 2 and exponent p of order p^{ℓ} (p odd). The commutator map $\Phi_G : G/[G,G] \times G/[G,G] \rightarrow [G,G]$:

$$\Phi_G(g_1, g_2) = [g_1, g_2], \ \forall \ g_1, g_2 \in G/[G, G]$$

is alternating:

$$\Phi_G(g,g) = e, \ \forall \ g \in G/[G,G].$$

Note: $G/[G,G] = (\mathbb{Z}/p\mathbb{Z})^n \cong \mathbb{F}_p^n$, $[G,G] = (\mathbb{Z}/p\mathbb{Z})^m \cong \mathbb{F}_p^m$ $(m+n=\ell)$.

(The isomorphisms correspond to distinguish basis of $(\mathbb{Z}/p\mathbb{Z})^n$ and $(\mathbb{Z}/p\mathbb{Z})^m$.) $\Phi_G : \mathbb{F}_p^n \times \mathbb{F}_p^n \to \mathbb{F}_p^m$ is an alternating bilinear map.

Let G be a p-group of class 2 and exponent p of order p^{ℓ} (p odd). The commutator map $\Phi_G : G/[G,G] \times G/[G,G] \rightarrow [G,G]$:

$$\Phi_G(g_1, g_2) = [g_1, g_2], \ \forall \ g_1, g_2 \in G/[G, G]$$

is alternating:

$$\Phi_G(g,g) = e, \ \forall \ g \in G/[G,G].$$

Note: $G/[G,G] = (\mathbb{Z}/p\mathbb{Z})^n \cong \mathbb{F}_p^n$, $[G,G] = (\mathbb{Z}/p\mathbb{Z})^m \cong \mathbb{F}_p^m$ $(m+n=\ell)$.

(The isomorphisms correspond to distinguish basis of $(\mathbb{Z}/p\mathbb{Z})^n$ and $(\mathbb{Z}/p\mathbb{Z})^m$.) $\Phi_G : \mathbb{F}_p^n \times \mathbb{F}_p^n \to \mathbb{F}_p^m$ is an alternating bilinear map.

$$\Phi_G: \mathbb{F}_p^n \times \mathbb{F}_p^n \to \mathbb{F}_p^m \iff \mathbb{G} = (A_1, \ldots, A_m) \in \Lambda(n, p)^m$$

Let G be a p-group of class 2 and exponent p of order p^{ℓ} (p odd). The commutator map $\Phi_G : G/[G,G] \times G/[G,G] \rightarrow [G,G]$:

$$\Phi_G(g_1, g_2) = [g_1, g_2], \ \forall \ g_1, g_2 \in G/[G, G]$$

is alternating:

$$\Phi_G(g,g) = e, \ \forall \ g \in G/[G,G].$$

Note: $G/[G,G] = (\mathbb{Z}/p\mathbb{Z})^n \cong \mathbb{F}_p^n$, $[G,G] = (\mathbb{Z}/p\mathbb{Z})^m \cong \mathbb{F}_p^m$ $(m+n=\ell)$.

(The isomorphisms correspond to distinguish basis of $(\mathbb{Z}/p\mathbb{Z})^n$ and $(\mathbb{Z}/p\mathbb{Z})^m$.) $\Phi_G : \mathbb{F}_p^n \times \mathbb{F}_p^n \to \mathbb{F}_p^m$ is an alternating bilinear map.

$$\Phi_G: \mathbb{F}_p^n \times \mathbb{F}_p^n \to \mathbb{F}_p^m \iff \mathbb{G} = (A_1, \dots, A_m) \in \Lambda(n, p)^m$$

[Baer 1938]: $G_1 \cong G_2 \Leftrightarrow \mathbb{G}_1$ and \mathbb{G}_2 are pseudo-isometric.

The Group Isomorphism Problem:

Given two groups G and H of order n, decide whether they are isomorphic.

 $G \cong H$ if there exists a bijective map $\phi: G \to H$, such that

 $\forall g_1,g_2 \in G, \phi(g_1 \circ g_2) = \phi(g_1) * \phi(g_2).$

The Group Isomorphism Problem:

Given two groups G and H of order n, decide whether they are isomorphic.

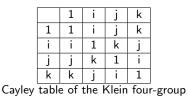
In computation, the groups are given as the **Cayley table**:

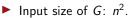
Cayley table of the Klein four-group

- Sparse input model (O(log n)): permutations, matrices, or black-box groups. (used in CGT)
- Undecidable, if given by generators and their relations. [Adian 1957, Rabin 1958]

The Group Isomorphism Problem:

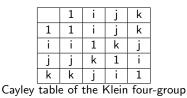
Given two groups G and H of order n, decide whether they are isomorphic.





The Group Isomorphism Problem:

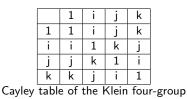
Given two groups G and H of order n, decide whether they are isomorphic.



- lnput size of $G: n^2$.
 - "Efficient" algorithm: poly(n) steps.

The Group Isomorphism Problem:

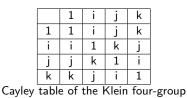
Given two groups G and H of order n, decide whether they are isomorphic.



- lnput size of $G: n^2$.
- "Efficient" algorithm: poly(n) steps.
- Current best algorithm: $n^{O(\log(n))}$ steps (Quasipolynomial).

The Group Isomorphism Problem:

Given two groups G and H of order n, decide whether they are isomorphic.



- lnput size of $G: n^2$.
- "Efficient" algorithm: poly(n) steps.
- Current best algorithm: $n^{O(\log(n))}$ steps (Quasipolynomial).
- Efficient algorithm for abelian groups.
- Barely improved from the brute-force algorithm for class 2 groups of exponent p. (Believed hard instance)

Pseudo-isometry Testing:

Given $\mathbb{G},\mathbb{H}\in\Lambda(n,q)^m,$ decide whether \mathbb{G} and \mathbb{H} are pseudo-isometric.

Testing isomorphism for p-groups of class 2 and exponent p in polynomial time reduces to testing pseudo-isometry in time q^{O(n+m)}.

Pseudo-isometry Testing:

Given $\mathbb{G},\mathbb{H}\in\Lambda(n,q)^m,$ decide whether \mathbb{G} and \mathbb{H} are pseudo-isometric.

Testing isomorphism for p-groups of class 2 and exponent p in polynomial time reduces to testing pseudo-isometry in time q^{O(n+m)}.

• Brute-force: q^{n^2} poly $(n, m, \log q)$.

Pseudo-isometry Testing:

Given $\mathbb{G},\mathbb{H}\in \Lambda(n,q)^m$, decide whether \mathbb{G} and \mathbb{H} are pseudo-isometric.

Testing isomorphism for p-groups of class 2 and exponent p in polynomial time reduces to testing pseudo-isometry in time q^{O(n+m)}.

• Brute-force: q^{n^2} poly $(n, m, \log q)$.

Pseudo-isometry Testing should not be NP-hard under standard complexity assumptions (PH does not collapse to the second level).

Pseudo-isometry Testing:

Given $\mathbb{G},\mathbb{H}\in \Lambda(n,q)^m$, decide whether \mathbb{G} and \mathbb{H} are pseudo-isometric.

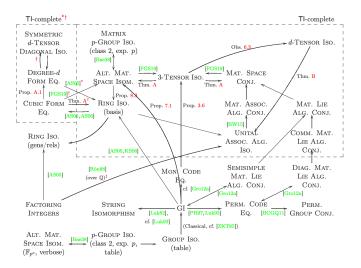
- Testing isomorphism for p-groups of class 2 and exponent p in polynomial time reduces to testing pseudo-isometry in time q^{O(n+m)}.
- Brute-force: q^{n^2} poly $(n, m, \log q)$.
- Pseudo-isometry Testing should not be NP-hard under standard complexity assumptions (PH does not collapse to the second level).
- Slightly better bounds for pseudo-isometry testing:
 - $q^{\frac{1}{4}(n+m)^2+O(n+m)}$ for prime $q \ge 3$ [Rosenbaum 13]
 - $q^{\frac{1}{4}(n^2+m^2)+O(n+m)}$ [Li-Qiao 17]

Pseudo-isometry Testing:

Given $\mathbb{G},\mathbb{H}\in\Lambda(n,q)^m,$ decide whether \mathbb{G} and \mathbb{H} are pseudo-isometric.

- Testing isomorphism for p-groups of class 2 and exponent p in polynomial time reduces to testing pseudo-isometry in time q^{O(n+m)}.
- **•** Brute-force: q^{n^2} poly $(n, m, \log q)$.
- Pseudo-isometry Testing should not be NP-hard under standard complexity assumptions (PH does not collapse to the second level).
- Slightly better bounds for pseudo-isometry testing:
 - $q^{\frac{1}{4}(n+m)^2+O(n+m)}$ for prime $q \ge 3$ [Rosenbaum 13]
 - $q^{\frac{1}{4}(n^2+m^2)+O(n+m)}$ [Li-Qiao 17]
- Isometry testing for alternating matrix tuples can be done in poly(n, m, q) for odd q [Brooksbank-Wilson 12, Ivanyos-Qiao 18].

Relations with Other Isomorphism Problems



Conclude in [Grochow-Qiao 2019].

Problem $A \rightarrow B$ means a polynomial-time algorithm of problem B can also solve problem A in polynomial time.

Average-case Algorithm

Work for "almost all" instances sampled from a certain random model.

Average-case Algorithm

Work for "almost all" instances sampled from a certain random model.

> **Random Graph Isomorphism** [Babai-Erdős-Selkow 80] For almost all graphs in the **Erdős-Rényi model**, testing isomorphism with any graph can be done in **linear** time.

Average-case Algorithm

Work for "almost all" instances sampled from a certain random model.

> **Random Graph Isomorphism** [Babai-Erdős-Selkow 80] For almost all graphs in the **Erdős-Rényi model**, testing isomorphism with any graph can be done in **linear** time.

Shares some ideas and techniques with practical algorithms.

Average-case Algorithm for Pseudo-isometry Testing

Theorem

For all but at most $1/q^{\Omega(nm)}$ fraction of $\mathbb{G} \in \Lambda(n,q)^m$, there is an algorithm which tests pseudo-isometry of \mathbb{G} with an arbitrary $\mathbb{H} \in \Lambda(n,q)^m$ in time $q^{O(n+m)}$.

Average-case Algorithm for Pseudo-isometry Testing

Theorem

For all but at most $1/q^{\Omega(nm)}$ fraction of $\mathbb{G} \in \Lambda(n,q)^m$, there is an algorithm which tests pseudo-isometry of \mathbb{G} with an arbitrary $\mathbb{H} \in \Lambda(n,q)^m$ in time $q^{O(n+m)}$.

The random model: Choose the strictly upper triangular parts from \mathbb{F}_q independently and uniformly at random. Set the diagonal entries to 0, and the lower triangular entries according to the upper triangular ones.

Γ Ο	$\mathbf{x}_{1,2}$	$\mathbf{x}_{1,3}$	x _{1,4}
$ -\mathbf{x}_{1,2} $	0	x _{2,3}	x _{2,4}
$ -\mathbf{x}_{1,3} $	$-{\bf x}_{2,3}$	0	x _{3,4}
$\left\lfloor -\mathbf{x}_{1,4} \right\rfloor$	$-\mathbf{x}_{2,4}$	$-{\bf x}_{3,4}$	0]

Average-case Algorithm for Pseudo-isometry Testing

Theorem

For all but at most $1/q^{\Omega(nm)}$ fraction of $\mathbb{G} \in \Lambda(n,q)^m$, there is an algorithm which tests pseudo-isometry of \mathbb{G} with an arbitrary $\mathbb{H} \in \Lambda(n,q)^m$ in time $q^{O(n+m)}$.

The random model: Choose the strictly upper triangular parts from \mathbb{F}_q independently and uniformly at random. Set the diagonal entries to 0, and the lower triangular entries according to the upper triangular ones.

Practically Implemented using Magma. (https://github.com/thetensor-space).

$$\begin{bmatrix} 0 & \mathbf{x}_{1,2} & \mathbf{x}_{1,3} & \mathbf{x}_{1,4} \\ -\mathbf{x}_{1,2} & 0 & \mathbf{x}_{2,3} & \mathbf{x}_{2,4} \\ -\mathbf{x}_{1,3} & -\mathbf{x}_{2,3} & 0 & \mathbf{x}_{3,4} \\ -\mathbf{x}_{1,4} & -\mathbf{x}_{2,4} & -\mathbf{x}_{3,4} & 0 \end{bmatrix}$$

thetensor-sp	ace / Auto-	Sandbox				Q 1013 -	1	* Unit	1	<i>Pfux</i>	1	
4) Code ①	50.05 S	I ful repeto 8	[[Projects @	10 W90	in relates							
igerithms for a	tamorphism	groups										
(2 192 commits 32 3 bran		branches	nches © 1 raiseas			4		a contributors				
hanh mader •	New pull req	.eel			Orbaile new T	Upland	thes:	Find File	Cure	er direction		
alaster Field	printing, fixed fit	er te include breadthe.	enoved two Produce					atast comm	arutad	a 28 days	890	
in examples		added Brahana bea								rearchs.	240	
in 100		Fixed printing, fixed filter to include breadths, removed two Produce						28 days ago				
10.000		small change to te	ting file							i northe	390	
E akignore		ignore attaincail								2 months	390	
E Auto-Sandbas	spec	added autas.m								a month-	190	
D READARCOM		Added Berlyston-	ensor interface						,) months	190	
D Installah		Dug fixes in install	ind update							2 months	190	
D under all		and of production	and the second last	and the second se						eventes.	_	

- Define "easy to check" properties which hold for "almost all" objects sampled from the random model.
- For objects satisfying these properties, isomorphism can be checked "efficiently".

Individualizing Alternating Matrix Tuples

Observation: If T is a pseudo-isometry from \mathbb{G} to \mathbb{H} , for every $c \in [m]$, T is an **isometry** from (G_1, \ldots, G_c) to some (H'_1, \ldots, H'_c) in $\langle \mathbb{H} \rangle^c$.

Individualizing Alternating Matrix Tuples

Observation: If T is a pseudo-isometry from \mathbb{G} to \mathbb{H} , for every $c \in [m]$, T is an **isometry** from (G_1, \ldots, G_c) to some (H'_1, \ldots, H'_c) in $\langle \mathbb{H} \rangle^c$.

To test pseudo-isometry, fix the images of G_1, \ldots, G_c .

$$\begin{array}{cccc} (G_1, & \cdots & G_c) \\ \downarrow & & \downarrow \\ (H'_1, & \cdots & H'_c) & \in \langle \mathbb{H} \rangle^c \end{array}$$

Individualizing Alternating Matrix Tuples

Observation: If T is a pseudo-isometry from \mathbb{G} to \mathbb{H} , for every $c \in [m]$, T is an **isometry** from (G_1, \ldots, G_c) to some (H'_1, \ldots, H'_c) in $\langle \mathbb{H} \rangle^c$.

To test pseudo-isometry, fix the images of G_1, \ldots, G_c .

$$\begin{array}{cccc} (G_1, & \cdots & G_c) \\ \downarrow & & \downarrow \\ (H'_1, & \cdots & H'_c) & \in \langle \mathbb{H} \rangle^c \end{array}$$

Identify the isometry $T \in GL(n, q)$:

$$(T^tG_1T,\ldots,T^tG_cT)=(H'_1,\ldots,H'_c),$$

check if T is a pseudo-isometry between \mathbb{G} and \mathbb{H} . (By solving linear equations.)

The Main Algorithm

Theorem ([Brooksbank-Wilson 12, Ivanyos-Qiao 18]) Testing isometry of alternating matrix tuples in $\Lambda(n, q)^m$ can be done in time poly(n, m, q) when q is odd. % The outputs are a coset representative and a set of generators.

Theorem ([Brooksbank-Wilson 12, Ivanyos-Qiao 18]) Testing isometry of alternating matrix tuples in $\Lambda(n, q)^m$ can be done in time poly(n, m, q) when q is odd. % The outputs are a coset representative and a set of generators.

Pseudo-isometry Testing for odd q

Input: $\mathbb{G} = (G_1, \dots, G_m), \mathbb{H} = (H_1, \dots, H_m) \in \Lambda(n, q)^m$, constant *c*.

- Enumerate all *c*-tuples \mathbb{H}_c in $\langle H_1, \ldots, H_m \rangle$;
- For each $\mathbb{H}_c = (H'_1, \ldots, H'_c)$, test isometry with $\mathbb{G}_c = (G_1, \ldots, G_c)$;
- If they are isometric, check whether every isometry T is also a pseudo-isometry between G and H.

Theorem ([Brooksbank-Wilson 12, Ivanyos-Qiao 18]) Testing isometry of alternating matrix tuples in $\Lambda(n, q)^m$ can be done in time poly(n, m, q) when q is odd. % The outputs are a coset representative and a set of generators.

Pseudo-isometry Testing for odd q

Input: $\mathbb{G} = (G_1, \dots, G_m), \mathbb{H} = (H_1, \dots, H_m) \in \Lambda(n, q)^m$, constant *c*.

- Enumerate all *c*-tuples \mathbb{H}_c in $\langle H_1, \ldots, H_m \rangle$;
- For each $\mathbb{H}_c = (H'_1, \ldots, H'_c)$, test isometry with $\mathbb{G}_c = (G_1, \ldots, G_c)$;
- If they are isometric, check whether every isometry T is also a pseudo-isometry between G and H.

Running time is dominated by two For-loops:

Theorem ([Brooksbank-Wilson 12, Ivanyos-Qiao 18]) Testing isometry of alternating matrix tuples in $\Lambda(n, q)^m$ can be done in time poly(n, m, q) when q is odd. % The outputs are a coset representative and a set of generators.

Pseudo-isometry Testing for odd q

Input: $\mathbb{G} = (G_1, \dots, G_m), \mathbb{H} = (H_1, \dots, H_m) \in \Lambda(n, q)^m$, constant *c*.

- Enumerate all *c*-tuples \mathbb{H}_c in $\langle H_1, \ldots, H_m \rangle$;
- For each $\mathbb{H}_c = (H'_1, \ldots, H'_c)$, test isometry with $\mathbb{G}_c = (G_1, \ldots, G_c)$;
- If they are isometric, check whether every isometry T is also a pseudo-isometry between G and H.

Running time is dominated by two For-loops:

• Enumerate *c*-tuples: q^{cm} . % $H'_i = \alpha_{i,1}H_1 + \cdots + \alpha_{i,m}H_m$ for $i \in [c]$

Theorem ([Brooksbank-Wilson 12, Ivanyos-Qiao 18]) Testing isometry of alternating matrix tuples in $\Lambda(n, q)^m$ can be done in time poly(n, m, q) when q is odd. % The outputs are a coset representative and a set of generators.

Pseudo-isometry Testing for odd q

Input: $\mathbb{G} = (G_1, \dots, G_m), \mathbb{H} = (H_1, \dots, H_m) \in \Lambda(n, q)^m$, constant *c*.

- Enumerate all *c*-tuples \mathbb{H}_c in $\langle H_1, \ldots, H_m \rangle$;
- ▶ For each $\mathbb{H}_c = (H'_1, \ldots, H'_c)$, test isometry with $\mathbb{G}_c = (G_1, \ldots, G_c)$;
- If they are isometric, check whether every isometry T is also a pseudo-isometry between G and H.

Running time is dominated by two For-loops:

- Enumerate *c*-tuples: q^{cm} . % $H'_i = \alpha_{i,1}H_1 + \cdots + \alpha_{i,m}H_m$ for $i \in [c]$
- Enumerate Isometries: For each \mathbb{H}_c , $|\{T \in GL(n,q) : T^t \mathbb{G}_c T = \mathbb{H}_c\}|$.

Theorem ([Brooksbank-Wilson 12, Ivanyos-Qiao 18]) Testing isometry of alternating matrix tuples in $\Lambda(n, q)^m$ can be done in time poly(n, m, q) when q is odd. % The outputs are a coset representative and a set of generators.

Pseudo-isometry Testing for odd q

Input: $\mathbb{G} = (G_1, \dots, G_m), \mathbb{H} = (H_1, \dots, H_m) \in \Lambda(n, q)^m$, constant *c*.

- Enumerate all *c*-tuples \mathbb{H}_c in $\langle H_1, \ldots, H_m \rangle$;
- For each $\mathbb{H}_c = (H'_1, \ldots, H'_c)$, test isometry with $\mathbb{G}_c = (G_1, \ldots, G_c)$;
- If they are isometric, check whether every isometry T is also a pseudo-isometry between G and H.

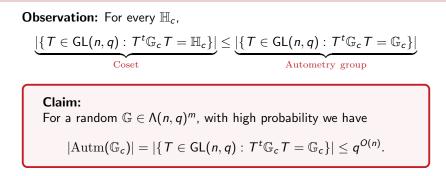
Running time is dominated by two For-loops:

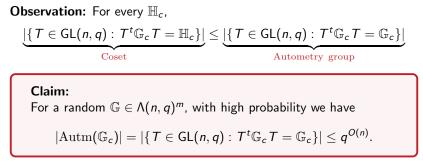
- Enumerate *c*-tuples: q^{cm} . % $H'_i = \alpha_{i,1}H_1 + \cdots + \alpha_{i,m}H_m$ for $i \in [c]$
- Enumerate Isometries: For each \mathbb{H}_c , $|\{T \in GL(n,q) : T^t \mathbb{G}_c T = \mathbb{H}_c\}|$.

 $\forall \ \mathbb{H}_c, \ |\{T \in \mathsf{GL}(n,q): T^t \mathbb{G}_c T = \mathbb{H}_c\}| \leq q^{O(n)} \Rightarrow \text{time bound } q^{O(n+m)}.$

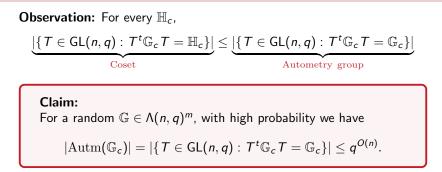
Given $\mathbb{G} = (G_1, \ldots, G_m), \mathbb{H} = (H_1, \ldots, H_m) \in \Lambda(n, q)^m$, $\forall \mathbb{H}_c \in \langle \mathbb{H} \rangle^c, |\{T \in GL(n, q) : T^t \mathbb{G}_c T = \mathbb{H}_c\}| \leq q^{O(n)}$ is not true in general. Given $\mathbb{G} = (G_1, \ldots, G_m), \mathbb{H} = (H_1, \ldots, H_m) \in \Lambda(n, q)^m$, $\forall \mathbb{H}_c \in \langle \mathbb{H} \rangle^c, |\{T \in GL(n, q) : T^t \mathbb{G}_c T = \mathbb{H}_c\}| \leq q^{O(n)}$ is not true in general.

But it holds for any ${\mathbb G}$ chosen uniformly at random!



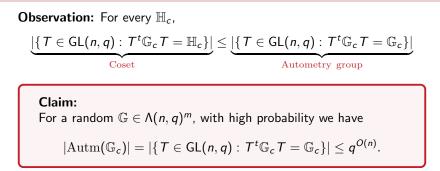


Random graphs have automorphism group size O(1) with high probability [Erdős-Rényi 1963]



The adjoint algebra and adjoint space:

$$\begin{split} \mathrm{Adj}(\mathbb{G}_c) &= \{ (A,D) \in \mathbb{M}(n,q) \oplus M(n,q) : A\mathbb{G}_c = \mathbb{G}_c D \}. \\ \mathrm{Adj}(\mathbb{G}_c,\mathbb{H}_c) &= \{ (A,D) \in \mathbb{M}(n,q) \oplus M(n,q) : A\mathbb{G}_c = \mathbb{H}_c D \}. \end{split}$$



The adjoint algebra and adjoint space:

$$\begin{split} &\operatorname{Adj}(\mathbb{G}_c) = \{(A,D) \in \mathbb{M}(n,q) \oplus M(n,q) : A\mathbb{G}_c = \mathbb{G}_c D\}.\\ &\operatorname{Adj}(\mathbb{G}_c,\mathbb{H}_c) = \{(A,D) \in \mathbb{M}(n,q) \oplus M(n,q) : A\mathbb{G}_c = \mathbb{H}_c D\}. \end{split}$$

▶ $|\operatorname{Autm}(\mathbb{G}_c)| \leq |\operatorname{Adj}(\mathbb{G}_c)|$ as $T \in \operatorname{Autm}(\mathbb{G}_c) \Rightarrow (T^t, T^{-1}) \in \operatorname{Adj}(\mathbb{G}_c)$.

• If \mathbb{G}_c and \mathbb{H}_c are isometric, $|\operatorname{Adj}(\mathbb{G}_c, \mathbb{H}_c)| = |\operatorname{Adj}(\mathbb{G}_c)|$

Can be efficiently computed by solving systems of linear equations.

Stable (Alternating) matrix tuple:

For every nontrivial subspace U of \mathbb{F}_q^n ,

 $\dim(\mathbb{G}_c(U)) = \dim(\langle G_1U, \ldots, G_cU \rangle) > \dim(U).$

% The stable concept comes from geometric invariant theory.

Stable (Alternating) matrix tuple:

```
For every nontrivial subspace U of \mathbb{F}_q^n,
```

```
\dim(\mathbb{G}_c(U)) = \dim(\langle G_1U, \ldots, G_cU \rangle) > \dim(U).
```

% The stable concept comes from geometric invariant theory.

 If G_c is stable, then every nonzero elements in Adj(G_c) is invertible. (Exercise!)

Stable (Alternating) matrix tuple:

```
For every nontrivial subspace U of \mathbb{F}_q^n,
```

```
\dim(\mathbb{G}_c(U)) = \dim(\langle G_1U, \ldots, G_cU \rangle) > \dim(U).
```

% The stable concept comes from geometric invariant theory.

- ► If G_c is stable, then every nonzero elements in Adj(G_c) is invertible. (Exercise!)
- $\operatorname{Adj}(\mathbb{G}_c)$ is a finite division algebra over \mathbb{F}_q which contains identity.

Stable (Alternating) matrix tuple:

```
For every nontrivial subspace U of \mathbb{F}_q^n,
```

 $\dim(\mathbb{G}_c(U)) = \dim(\langle G_1U, \ldots, G_cU \rangle) > \dim(U).$

% The stable concept comes from geometric invariant theory.

- ► If G_c is stable, then every nonzero elements in Adj(G_c) is invertible. (Exercise!)
- $\operatorname{Adj}(\mathbb{G}_c)$ is a finite division algebra over \mathbb{F}_q which contains identity.
- ► Adj(G_c) is a field by Wedderburn's little theorem. And we can conclude

Theorem: \mathbb{G}_c is stable \Rightarrow $|\mathrm{Adj}(\mathbb{G}_c)| \leq q^n$.

Upper Bound the Probability of being Unstable

Claim: With probability $1 - \frac{1}{q^{\Omega(n)}}$, a random \mathbb{G}_c is stable.

Upper Bound the Probability of being Unstable

Claim: With probability $1 - \frac{1}{q^{\Omega(n)}}$, a random \mathbb{G}_c is stable.

- Convert 4 random alternating matrices into 1 random matrix.
- Upper bound the probability of a random tuple of 5 matrices being nonstable.

Upper Bound the Probability of being Unstable

Claim: With probability $1 - \frac{1}{q^{\Omega(n)}}$, a random \mathbb{G}_c is stable.

- Convert 4 random alternating matrices into 1 random matrix.
- Upper bound the probability of a random tuple of 5 matrices being nonstable.

Theorem:

For $c \geq 20$, with probability $1 - \frac{1}{q^{\Omega(n)}}$, a random $\mathbb{G}_c \in \Lambda(n, q)^c$ satisfies $|\operatorname{Autm}(\mathbb{G}_c)| \leq q^{O(n)}$.

Pseudo-isometry testing for odd q

Input: $\mathbb{G} = (G_1, \ldots, G_m), \mathbb{H} = (H_1, \ldots, H_m) \in \Lambda(n, q)^m$, constant *c*.

- Enumerate all *c*-tuples in $\langle H_1, \ldots, H_m \rangle$;
- For each $\mathbb{H}_c = (H'_1, \ldots, H'_c)$, test isometry with $\mathbb{G}_c = (G_1, \ldots, G_c)$;
- If they are isometric, check whether every isometry T is also a pseudo-isometry between G and H.

Pseudo-isometry testing for odd q

Input: $\mathbb{G} = (G_1, \ldots, G_m), \mathbb{H} = (H_1, \ldots, H_m) \in \Lambda(n, q)^m$, constant $c \geq 20$.

- ► Compute a generating set of Autm(𝔅_c);
- If $|\operatorname{Autm}((G_1, \ldots, G_c))| > q^n$, terminate;
- Enumerate all *c*-tuples in $\langle H_1, \ldots, H_m \rangle$;
- ▶ For each $\mathbb{H}_c = (H'_1, \ldots, H'_c)$, test isometry with $\mathbb{G}_c = (G_1, \ldots, G_c)$;
- If they are isometric, check whether every isometry T is also a pseudo-isometry between G and H.

Pseudo-isometry testing for odd qInput: $\mathbb{G} = (G_1, \dots, G_m), \mathbb{H} = (H_1, \dots, H_m) \in \Lambda(n, q)^m$, constant $c \ge 20$.

- ▶ Compute a generating set of Autm(𝔅_c);
- If $|\operatorname{Autm}((G_1, \ldots, G_c))| > q^n$, terminate;
- Enumerate all *c*-tuples in $\langle H_1, \ldots, H_m \rangle$;
- For each $\mathbb{H}_c = (H'_1, \ldots, H'_c)$, test isometry with $\mathbb{G}_c = (G_1, \ldots, G_c)$;
- If they are isometric, check whether every isometry T is also a pseudo-isometry between G and ℍ.

Theorem

For odd q and $m \ge 20$, the above algorithm tests pseudo-isometry for almost but $\frac{1}{n^{O(n)}}$ fraction of $\mathbb{G} \in \Lambda(n, q)^m$ with arbitrary $\mathbb{H} \in \Lambda(n, q)^m$ in time $q^{O(n+m)}$.

Pseudo-isometry testing for odd qInput: $\mathbb{G} = (G_1, \ldots, G_m), \mathbb{H} = (H_1, \ldots, H_m) \in \Lambda(n, q)^m$, constant $c \ge 20$.

- ▶ Compute a generating set of Autm(𝔅_c);
- If $|\operatorname{Autm}((G_1, \ldots, G_c))| > q^n$, terminate;
- Enumerate all *c*-tuples in $\langle H_1, \ldots, H_m \rangle$;
- For each $\mathbb{H}_c = (H'_1, \ldots, H'_c)$, test isometry with $\mathbb{G}_c = (G_1, \ldots, G_c)$;
- If they are isometric, check whether every isometry T is also a pseudo-isometry between G and ℍ.

Theorem

For odd q and $m \ge 20$, the above algorithm tests pseudo-isometry for almost but $\frac{1}{q^{\Omega(n)}}$ fraction of $\mathbb{G} \in \Lambda(n,q)^m$ with arbitrary $\mathbb{H} \in \Lambda(n,q)^m$ in time $q^{O(n+m)}$.

► odd q ⇒ all q: Replace all isometry tests by computing adjoint algebra and adjoint space.

Pseudo-isometry testing for odd qInput: $\mathbb{G} = (G_1, \ldots, G_m), \mathbb{H} = (H_1, \ldots, H_m) \in \Lambda(n, q)^m$, constant $c \ge 20$.

- ▶ Compute a generating set of Autm(𝔅_c);
- If $|\operatorname{Autm}((G_1, \ldots, G_c))| > q^n$, terminate;
- Enumerate all *c*-tuples in $\langle H_1, \ldots, H_m \rangle$;
- For each $\mathbb{H}_c = (H'_1, \ldots, H'_c)$, test isometry with $\mathbb{G}_c = (G_1, \ldots, G_c)$;
- If they are isometric, check whether every isometry T is also a pseudo-isometry between G and ℍ.

Theorem

For odd q and $m \ge 20$, the above algorithm tests pseudo-isometry for almost but $\frac{1}{q^{\Omega(n)}}$ fraction of $\mathbb{G} \in \Lambda(n,q)^m$ with arbitrary $\mathbb{H} \in \Lambda(n,q)^m$ in time $q^{O(n+m)}$.

- ► odd q ⇒ all q: Replace all isometry tests by computing adjoint algebra and adjoint space.
- $\frac{1}{q^{\Omega(n)}} \Rightarrow \frac{1}{q^{\Omega(nm)}}$: Enumerate all *c*-tuples of \mathbb{G} until one stable tuple is found.

Implementation Trick:

• Tolerable enumeration in a laptop: 5^{10} .

Implementation Trick:

- Tolerable enumeration in a laptop: 5^{10} .
- Solution: c = 3 is normally sufficient in practice.

Implementation Trick:

- ► Tolerable enumeration in a laptop: 5¹⁰.
- Solution: c = 3 is normally sufficient in practice.
- Reduce the enumeration cost: Choose low-rank matrices.
 % When q is small, #low-rank matrices in a random alternating tuple is expected to be much smaller than q^m and no less than 3.

Implementation Trick:

- ► Tolerable enumeration in a laptop: 5¹⁰.
- Solution: c = 3 is normally sufficient in practice.
- Reduce the enumeration cost: Choose low-rank matrices.
 % When q is small, #low-rank matrices in a random alternating tuple is expected to be much smaller than q^m and no less than 3.

Experiments:

- \blacktriangleright Randomly generate $\mathbb{G}, \mathbb{H} \in \Lambda(5,3)^4$ and test isometry.
- ► Randomly generate $\mathbb{G} \in \Lambda(5,3)^4$ and $T \in GL(5,3)$ and test isometry between \mathbb{G} and $T^t \mathbb{G} T$.

Implementation Trick:

- ► Tolerable enumeration in a laptop: 5¹⁰.
- Solution: c = 3 is normally sufficient in practice.
- Reduce the enumeration cost: Choose low-rank matrices.
 % When q is small, #low-rank matrices in a random alternating tuple is expected to be much smaller than q^m and no less than 3.

Experiments:

- ▶ Randomly generate $\mathbb{G}, \mathbb{H} \in \Lambda(5,3)^4$ and test isometry.
- ► Randomly generate $\mathbb{G} \in \Lambda(5,3)^4$ and $T \in GL(5,3)$ and test isometry between \mathbb{G} and $T^t \mathbb{G} T$.

Brute-force: Fail to complete. $\% 5^{10} \ll 3^{25}$

Implementation Trick:

- ► Tolerable enumeration in a laptop: 5¹⁰.
- Solution: c = 3 is normally sufficient in practice.
- Reduce the enumeration cost: Choose low-rank matrices.
 % When q is small, #low-rank matrices in a random alternating tuple is expected to be much smaller than q^m and no less than 3.

Experiments:

- ▶ Randomly generate $\mathbb{G}, \mathbb{H} \in \Lambda(5,3)^4$ and test isometry.
- Randomly generate G ∈ Λ(5,3)⁴ and T ∈ GL(5,3) and test isometry between G and T^tGT.

Brute-force: Fail to complete. % $5^{10} \ll 3^{25}$

Our (Modified) Algorithm: Complete with correct answer in 2 minutes.

Implementation Trick:

- ► Tolerable enumeration in a laptop: 5¹⁰.
- Solution: c = 3 is normally sufficient in practice.
- Reduce the enumeration cost: Choose low-rank matrices.
 % When q is small, #low-rank matrices in a random alternating tuple is expected to be much smaller than q^m and no less than 3.

Experiments:

- ▶ Randomly generate $\mathbb{G}, \mathbb{H} \in \Lambda(5,3)^4$ and test isometry.
- Randomly generate G ∈ Λ(5,3)⁴ and T ∈ GL(5,3) and test isometry between G and T^tGT.

Brute-force: Fail to complete. % $5^{10} \ll 3^{25}$

Our (Modified) Algorithm: Complete with correct answer in 2 minutes.

- A general strategy for group isomorphism which combines recent algebraic techniques with the Weisfeiler-Leman refinement technique for Graph Isomorphism.
- A new random model for finite groups, and average-case results to support the "filter and WL" refinement.
- Worst-case polynomial-time algorithms for testing isomorphism of groups with "genus-2 radicals".

arXiv:1905.02518

Thanks for your Attention!