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Alternating Matrix Tuples

A ∈ Λ(n, q) v tAv = 0 ∀ v ∈ Fn
q

G,H ∈ Λ(n, q)m m-tuples of n × n alternating matrices over Fq

GL(n, q) The general linear group of degree n over Fq

G =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

,


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

,


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0




H =




0 −1 0 −2
1 0 1 0
0 −1 0 −1
2 0 1 0

,


0 1 −1 0
−1 0 −1 −1
1 1 0 1
0 1 −1 0

,


0 −1 0 −1
1 0 0 −1
0 0 0 0
1 1 0 0



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0 1 1 1
1 0 1 1
0 1 0 0
1 1 1 0


〈

G︷ ︸︸ ︷


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

,


0 0 0 0
0 0 1 0
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〉
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0 1 0 1
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=

〈


0 0 −1 −2
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1 0 0 0
2 1 0 0

,


0 −2 0 −3
2 0 1 −1
0 −1 0 −1
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,


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1 1 0 1
1 2 −1 0
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︸ ︷︷ ︸
H′
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Alternating Matrix Tuples

A ∈ Λ(n, q) v tAv = 0 ∀ v ∈ Fn
q

G,H ∈ Λ(n, q)m m-tuples of n × n alternating matrices over Fq

GL(n, q) The general linear group of degree n over Fq

G and H are isometric if and only if

∃T ∈ GL(n, q), s.t. T tGT = (T tG1T , . . . ,T
tGmT ) = H.

G and H are pseudo-isometric if and only if

∃T ∈ GL(n, q), the linear span of T tGT and H are the same.

(Pseudo-)Isometry Testing:

Given G,H ∈ Λ(n, q)m, determine whether G and H are
(pseudo-)isometric.



Why should we care about pseudo-isometry testing
of alternating matrix tuples?



p-groups and Alternating Matrix Tuples

Let G be a p-group of class 2 and exponent p of order p` (p odd).

I Class (at most) 2: [G ,G ] ≤ Z (G ) = {g ∈ G : gg ′ = g ′g ∀ g ′ ∈ G}.
I Abelian groups are class 1: [G ,G ] = {1}.
I exponent p: gp = 1 ∀ g ∈ G .

The commutator map ΦG : G/[G ,G ]× G/[G ,G ]→ [G ,G ]:

ΦG (g1, g2) = [g1, g2], ∀ g1, g2 ∈ G/[G ,G ]

is alternating:
ΦG (g , g) = e, ∀ g ∈ G/[G ,G ].

Note: G/[G ,G ] = (Z/pZ)n ∼= Fn
p, [G ,G ] = (Z/pZ)m ∼= Fm

p (m + n = `).

(The isomorphisms correspond to distinguish basis of (Z/pZ)n and
(Z/pZ)m.) ΦG : Fn

p × Fn
p → Fm

p is an alternating bilinear map.

ΦG : Fn
p × Fn

p → Fm
p ⇔ G = (A1, . . . ,Am) ∈ Λ(n, p)m

[Baer 1938]: G1
∼= G2 ⇔ G1 and G2 are pseudo-isometric.



p-groups and Alternating Matrix Tuples

Let G be a p-group of class 2 and exponent p of order p` (p odd).

The commutator map ΦG : G/[G ,G ]× G/[G ,G ]→ [G ,G ]:

ΦG (g1, g2) = [g1, g2], ∀ g1, g2 ∈ G/[G ,G ]

is alternating:
ΦG (g , g) = e, ∀ g ∈ G/[G ,G ].

Note: G/[G ,G ] = (Z/pZ)n ∼= Fn
p, [G ,G ] = (Z/pZ)m ∼= Fm

p (m + n = `).

(The isomorphisms correspond to distinguish basis of (Z/pZ)n and
(Z/pZ)m.) ΦG : Fn

p × Fn
p → Fm

p is an alternating bilinear map.

ΦG : Fn
p × Fn

p → Fm
p ⇔ G = (A1, . . . ,Am) ∈ Λ(n, p)m

[Baer 1938]: G1
∼= G2 ⇔ G1 and G2 are pseudo-isometric.



p-groups and Alternating Matrix Tuples

Let G be a p-group of class 2 and exponent p of order p` (p odd).

The commutator map ΦG : G/[G ,G ]× G/[G ,G ]→ [G ,G ]:

ΦG (g1, g2) = [g1, g2], ∀ g1, g2 ∈ G/[G ,G ]

is alternating:
ΦG (g , g) = e, ∀ g ∈ G/[G ,G ].

Note: G/[G ,G ] = (Z/pZ)n ∼= Fn
p, [G ,G ] = (Z/pZ)m ∼= Fm

p (m + n = `).

(The isomorphisms correspond to distinguish basis of (Z/pZ)n and
(Z/pZ)m.) ΦG : Fn

p × Fn
p → Fm

p is an alternating bilinear map.

ΦG : Fn
p × Fn

p → Fm
p ⇔ G = (A1, . . . ,Am) ∈ Λ(n, p)m

[Baer 1938]: G1
∼= G2 ⇔ G1 and G2 are pseudo-isometric.



p-groups and Alternating Matrix Tuples

Let G be a p-group of class 2 and exponent p of order p` (p odd).

The commutator map ΦG : G/[G ,G ]× G/[G ,G ]→ [G ,G ]:

ΦG (g1, g2) = [g1, g2], ∀ g1, g2 ∈ G/[G ,G ]

is alternating:
ΦG (g , g) = e, ∀ g ∈ G/[G ,G ].

Note: G/[G ,G ] = (Z/pZ)n ∼= Fn
p, [G ,G ] = (Z/pZ)m ∼= Fm

p (m + n = `).

(The isomorphisms correspond to distinguish basis of (Z/pZ)n and
(Z/pZ)m.) ΦG : Fn

p × Fn
p → Fm

p is an alternating bilinear map.

ΦG : Fn
p × Fn

p → Fm
p ⇔ G = (A1, . . . ,Am) ∈ Λ(n, p)m

[Baer 1938]: G1
∼= G2 ⇔ G1 and G2 are pseudo-isometric.



p-groups and Alternating Matrix Tuples

Let G be a p-group of class 2 and exponent p of order p` (p odd).

The commutator map ΦG : G/[G ,G ]× G/[G ,G ]→ [G ,G ]:

ΦG (g1, g2) = [g1, g2], ∀ g1, g2 ∈ G/[G ,G ]

is alternating:
ΦG (g , g) = e, ∀ g ∈ G/[G ,G ].

Note: G/[G ,G ] = (Z/pZ)n ∼= Fn
p, [G ,G ] = (Z/pZ)m ∼= Fm

p (m + n = `).

(The isomorphisms correspond to distinguish basis of (Z/pZ)n and
(Z/pZ)m.) ΦG : Fn

p × Fn
p → Fm

p is an alternating bilinear map.

ΦG : Fn
p × Fn

p → Fm
p ⇔ G = (A1, . . . ,Am) ∈ Λ(n, p)m

[Baer 1938]: G1
∼= G2 ⇔ G1 and G2 are pseudo-isometric.



The Group Isomorphism Problem

The Group Isomorphism Problem:
Given two groups G and H of order n, decide whether they are
isomorphic.

G ∼= H if there exists a bijective map φ : G → H, such that

∀ g1, g2 ∈ G , φ(g1 ◦ g2) = φ(g1) ∗ φ(g2).

In computation, the groups are given as the Cayley table:

1 i j k

1 1 i j k

i i 1 k j

j j k 1 i

k k j i 1
Cayley table of the Klein four-group

I Input size of G : n2.

I “Efficient” algorithm: poly(n) steps.

I Current best algorithm: nO(log(n)) steps (Quasipolynomial).

I Efficient algorithm for abelian groups.

I Barely improved from the brute-force algorithm for class 2 groups of
exponent p. (Believed hard instance)
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Algorithms for Pseudo-isometry Testing

Pseudo-isometry Testing:
Given G,H ∈ Λ(n, q)m, decide whether G and H are pseudo-
isometric.

I Testing isomorphism for p-groups of class 2 and exponent p in
polynomial time reduces to testing pseudo-isometry in time qO(n+m).

I Brute-force: qn
2

poly(n,m, log q).

I Pseudo-isometry Testing should not be NP-hard under standard
complexity assumptions (PH does not collapse to the second level).

I Slightly better bounds for pseudo-isometry testing:

I q
1
4 (n+m)2+O(n+m) for prime q ≥ 3 [Rosenbaum 13]

I q
1
4 (n2+m2)+O(n+m) [Li-Qiao 17]

I Isometry testing for alternating matrix tuples can be done in
poly(n,m, q) for odd q [Brooksbank-Wilson 12, Ivanyos-Qiao 18].
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Relations with Other Isomorphism Problems

Conclude in [Grochow-Qiao 2019].
Problem A→ B means a polynomial-time algorithm of problem B can also

solve problem A in polynomial time.



Average-case Algorithm

I Work for “almost all” instances sampled from a certain
random model.

Random Graph Isomorphism [Babai-Erdős-Selkow 80]
For almost all graphs in the Erdős-Rényi model, testing iso-
morphism with any graph can be done in linear time.

I Shares some ideas and techniques with practical algorithms.
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For almost all graphs in the Erdős-Rényi model, testing iso-
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Average-case Algorithm for Pseudo-isometry Testing

Theorem
For all but at most 1/qΩ(nm) fraction of G ∈ Λ(n, q)m , there
is an algorithm which tests pseudo-isometry of G with an
arbitrary H ∈ Λ(n, q)m in time qO(n+m).

The random model: Choose the strictly upper

triangular parts from Fq independently and

uniformly at random. Set the diagonal entries

to 0, and the lower triangular entries according

to the upper triangular ones.


0 x1,2 x1,3 x1,4

−x1,2 0 x2,3 x2,4

−x1,3 −x2,3 0 x3,4

−x1,4 −x2,4 −x3,4 0



Practically Implemented using Magma.
(https://github.com/thetensor-space).
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Key idea about Average-case Algorithms

I Define “easy to check” properties which hold for “almost all”
objects sampled from the random model.

I For objects satisfying these properties, isomorphism can be
checked “efficiently”.



Individualizing Alternating Matrix Tuples

Observation: If T is a pseudo-isometry from G to H, for
every c ∈ [m], T is an isometry from (G1, . . . ,Gc) to some
(H ′

1, . . . ,H
′
c) in 〈H〉c .

To test pseudo-isometry, fix the images of G1, . . . ,Gc .

(G1, · · · Gc)
↓ ↓

(H ′
1, · · · H ′

c) ∈ 〈H〉c

Identify the isometry T ∈ GL(n, q):

(T tG1T , . . . ,T
tGcT ) = (H ′

1, . . . ,H
′
c),

check if T is a pseudo-isometry between G and H. (By solving
linear equations.)
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The Main Algorithm

Theorem ([Brooksbank-Wilson 12, Ivanyos-Qiao 18])
Testing isometry of alternating matrix tuples in Λ(n, q)m can be
done in time poly(n,m, q) when q is odd.
% The outputs are a coset representative and a set of generators.

Pseudo-isometry Testing for odd q
Input: G = (G1, . . . ,Gm),H = (H1, . . . ,Hm) ∈ Λ(n, q)m, constant c.

I Enumerate all c-tuples Hc in 〈H1, . . . ,Hm〉;
I For each Hc = (H ′1, . . . ,H

′
c), test isometry with Gc = (G1, . . . ,Gc);

I If they are isometric, check whether every isometry T is also a
pseudo-isometry between G and H.

Running time is dominated by two For-loops:

I Enumerate c-tuples: qcm. % H ′i = αi,1H1 + · · ·+ αi,mHm for i ∈ [c]

I Enumerate Isometries: For each Hc , |{T ∈ GL(n, q) : T tGcT = Hc}|.
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Given G = (G1, . . . ,Gm),H = (H1, . . . ,Hm) ∈ Λ(n, q)m,

∀ Hc ∈ 〈H〉c , |{T ∈ GL(n, q) : T tGcT = Hc}|≤ qO(n)

is not true in general.

But it holds for any G chosen uniformly at random!
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Average-case Analysis: Adjoint Algebra

Observation: For every Hc ,

|{T ∈ GL(n, q) : T tGcT = Hc}|︸ ︷︷ ︸
Coset

≤ |{T ∈ GL(n, q) : T tGcT = Gc}|︸ ︷︷ ︸
Autometry group

Claim:
For a random G ∈ Λ(n, q)m, with high probability we have

|Autm(Gc)| = |{T ∈ GL(n, q) : T tGcT = Gc}| ≤ qO(n).

The adjoint algebra and adjoint space:

Adj(Gc) = {(A,D) ∈M(n, q)⊕M(n, q) : AGc = GcD}.

Adj(Gc ,Hc) = {(A,D) ∈M(n, q)⊕M(n, q) : AGc = HcD}.

I |Autm(Gc)| ≤ |Adj(Gc)| as T ∈ Autm(Gc) ⇒ (T t ,T−1) ∈ Adj(Gc).

I If Gc and Hc are isometric, |Adj(Gc ,Hc)| = |Adj(Gc)|

I Can be efficiently computed by solving systems of linear equations.
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Average-case Analysis: Stable Alternating Tuples

Stable (Alternating) matrix tuple:

For every nontrivial subspace U of Fn
q,

dim(Gc(U)) = dim(〈G1U, . . . ,GcU〉) > dim(U).

% The stable concept comes from geometric invariant theory.

I If Gc is stable, then every nonzero elements in Adj(Gc) is invertible.
(Exercise!)

I Adj(Gc) is a finite division algebra over Fq which contains identity.

I Adj(Gc) is a field by Wedderburn’s little theorem. And we can
conclude

Theorem: Gc is stable ⇒ |Adj(Gc)| ≤ qn.
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Upper Bound the Probability of being Unstable

Claim: With probability 1− 1
qΩ(n) , a random Gc is stable.

I Convert 4 random alternating matrices into 1 random matrix.

I Upper bound the probability of a random tuple of 5 matrices
being nonstable.

Theorem:
For c ≥ 20, with probability 1− 1

qΩ(n) , a random Gc ∈ Λ(n, q)c

satisfies |Autm(Gc)| ≤ qO(n).



Upper Bound the Probability of being Unstable

Claim: With probability 1− 1
qΩ(n) , a random Gc is stable.

I Convert 4 random alternating matrices into 1 random matrix.

I Upper bound the probability of a random tuple of 5 matrices
being nonstable.

Theorem:
For c ≥ 20, with probability 1− 1

qΩ(n) , a random Gc ∈ Λ(n, q)c

satisfies |Autm(Gc)| ≤ qO(n).



Upper Bound the Probability of being Unstable

Claim: With probability 1− 1
qΩ(n) , a random Gc is stable.

I Convert 4 random alternating matrices into 1 random matrix.

I Upper bound the probability of a random tuple of 5 matrices
being nonstable.

Theorem:
For c ≥ 20, with probability 1− 1

qΩ(n) , a random Gc ∈ Λ(n, q)c

satisfies |Autm(Gc)| ≤ qO(n).



The Main Algorithm, Revisited

Pseudo-isometry testing for odd q
Input: G = (G1, . . . ,Gm),H = (H1, . . . ,Hm) ∈ Λ(n, q)m, constant c.

I Enumerate all c-tuples in 〈H1, . . . ,Hm〉;
I For each Hc = (H ′1, . . . ,H

′
c), test isometry with Gc = (G1, . . . ,Gc);

I If they are isometric, check whether every isometry T is also a
pseudo-isometry between G and H.

I odd q ⇒ all q: Replace all isometry tests by computing adjoint algebra
and adjoint space.

I 1

qΩ(n) ⇒ 1

qΩ(nm) : Enumerate all c-tuples of G until one stable tuple is

found.
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Practical Implementation

Implementation Trick:

I Tolerable enumeration in a laptop: 510.

I Solution: c = 3 is normally sufficient in practice.

I Reduce the enumeration cost: Choose low-rank matrices.
% When q is small, #low-rank matrices in a random alternating tuple is

expected to be much smaller than qm and no less than 3.

Experiments:

I Randomly generate G,H ∈ Λ(5, 3)4 and test isometry.

I Randomly generate G ∈ Λ(5, 3)4 and T ∈ GL(5, 3) and test
isometry between G and T tGT .

Brute-force: Fail to complete. % 510 � 325

Our (Modified) Algorithm: Complete with correct answer in 2
minutes.
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Other results (not in this talk)

I A general strategy for group isomorphism which combines recent
algebraic techniques with the Weisfeiler-Leman refinement
technique for Graph Isomorphism.

I A new random model for finite groups, and average-case results to
support the “filter and WL” refinement.

I Worst-case polynomial-time algorithms for testing isomorphism of
groups with “genus-2 radicals”.
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