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Alternating Matrix Tuples

A€ N(n,q) ViAv =0V v € Iy
G,H € A(n,q)™ | m-tuples of n x n alternating matrices over F,
GL(n, q) The general linear group of degree n over I,

G and H are isometric if and only if
aT € GL(n,q), st. T'"GT =(T'G T,..., T'G,T) =H.
G and H are pseudo-isometric if and only if

3T € GL(n, q), the linear span of T!GT and H are the same.

(Pseudo-)lsometry Testing:

Given G,H € A(n,q)™, determine whether G and H are
(pseudo-)isometric.




Why should we care about pseudo-isometry testing
of alternating matrix tuples?



p-groups and Alternating Matrix Tuples

Let G be a p-group of class 2 and exponent p of order p’ (p odd).
» Class (at most) 2: [G,G] < Z(G)={ge G:gg' =g'gV g’ € G}.
» Abelian groups are class 1: [G, G] = {1}.
» exponent p: gP =1V g€ G.
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p-groups and Alternating Matrix Tuples

Let G be a p-group of class 2 and exponent p of order p’ (p odd).
The commutator map ®¢ : G/[G, G] x G/[G, G] — [G, G]:

(g1, 82) = g1, 8], V g1,8 € G/[G, G]

is alternating:
®c(g,8) =e Vg€ G/[G,G].

Note: G/[G, G] = (Z/pZ)" =y}, [G, G] = (Z/pZ)™ =F] (m+n=1{).

(The isomorphisms correspond to distinguish basis of (Z/pZ)" and
(Z/pZ)™.) &g : Fy x Fp — T is an alternating bilinear map.

b6 Fy xFy = F) < G=(A1,...,An) € N(n,p)"

[Baer 1938]: G; = G, & G4 and G are pseudo-isometric.



The Group Isomorphism Problem

The Group Isomorphism Problem:
Given two groups G and H of order n, decide whether they are
isomorphic.

G = H if there exists a bijective map ¢ : G — H, such that
Vg1,8 € G, ¢(giog)=dg) * 4(g)



The Group Isomorphism Problem

The Group Isomorphism Problem:
Given two groups G and H of order
isomorphic.

n, decide whether they are

In computation, the groups are given as t
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Cayley table of the Klein four-group

he Cayley table:

» Sparse input model (O(log n)):
permutations, matrices, or
black-box groups. (used in CGT)

» Undecidable, if given by
generators and their relations.
[Adian 1957, Rabin 1958]
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» Input size of G: n°.
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The Group Isomorphism Problem

The Group Isomorphism Problem:
Given two groups G and H of order n, decide whether they are

isomorphic.

In computation, the groups are given as the Cayley table:

=X
== x| x

1]
1[1]i
i[i]1
i1k

k| k|j|il1
Cayley table of the Klein four-group

» Input size of G: n?.

» “Efficient” algorithm: poly(n) steps.

> Current best algorithm: n©(°e(") steps (Quasipolynomial).
» Efficient algorithm for abelian groups.

>

Barely improved from the brute-force algorithm for class 2 groups of
exponent p. (Believed hard instance)
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Algorithms for Pseudo-isometry Testing

Pseudo-isometry Testing:
Given G,H € A(n,q)™, decide whether G and H are pseudo-
isometric.

» Testing isomorphism for p-groups of class 2 and exponent p in
polynomial time reduces to testing pseudo-isometry in time g@(" ).

» Brute-force: q"2po|y(n, m, log q).
» Pseudo-isometry Testing should not be NP-hard under standard
complexity assumptions (PH does not collapse to the second level).
» Slightly better bounds for pseudo-isometry testing:
> gi(rtm) +0(ntm) for prime g > 3 [Rosenbaum 13]
> q%(n2+m2)+0(n+m) [Li-Qiao 17]
» Isometry testing for alternating matrix tuples can be done in
poly(n, m, q) for odd g [Brooksbank-Wilson 12, Ivanyos-Qiao 18].



Relations with Other Isomorphism Problems
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Conclude in [Grochow-Qiao 2019].
Problem A — B means a polynomial-time algorithm of problem B can also
solve problem A in polynomial time.
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Average-case Algorithm

» Work for “almost all” instances sampled from a certain
random model.

Random Graph Isomorphism [Babai-Erd8s-Selkow 80]
For almost all graphs in the Erdés-Rényi model, testing iso-
morphism with any graph can be done in linear time.

nauty and Traces

Brendan McKay and Adolfo Piperno

GRAPH CANONICAL LABELING AND
AUTOMORPHISM GROUP COMPUTATION



Average-case Algorithm for Pseudo-isometry Testing

Theorem

For all but at most 1/g*("™) fraction of G € A(n,q)™ , there
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arbitrary H € A(n, q)™ in time g9("+m),
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Average-case Algorithm for Pseudo-isometry Testing

Theorem

For all but at most 1/¢("™) fraction of G € A(n, )™ , there
is an algorithm which tests pseudo-isometry of G with an
arbitrary H € A(n, q)™ in time g9("+m),

The random model: Choose the strictly upper
0 X12  X13 X4

—x12 0 X23  X24
—x13 —Xx23 0 X34
—X14 —X24 —Xx34 O

triangular parts from Fg independently and
uniformly at random. Set the diagonal entries
to 0, and the lower triangular entries according

to the upper triangular ones.

Practically Implemented using Magma. :: — — ==='
(https://github.com /thetensor-space).



Key idea about Average-case Algorithms

» Define “easy to check” properties which hold for “almost all”
objects sampled from the random model.

P> For objects satisfying these properties, isomorphism can be
checked “efficiently”.
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Individualizing Alternating Matrix Tuples

Observation: If T is a pseudo-isometry from G to H, for
every ¢ € [m], T is an isometry from (Gy, ..., G:) to some
(Hi, ..., H.) in (H)C.

To test pseudo-isometry, fix the images of Gy, ..., Gc.
(G, -+ G
\ \
(Hi, - H) e(H)

Identify the isometry T € GL(n, q):
(T'GiT,...,T'G.T) = (H;,..., H.),

check if T is a pseudo-isometry between G and H. (By solving
linear equations.)



The Main Algorithm
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Testing isometry of alternating matrix tuples in A(n,g)™ can be
done in time poly(n, m, q) when ¢ is odd.

% The outputs are a coset representative and a set of generators.
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The Main Algorithm

Theorem ([Brooksbank-Wilson 12, Ivanyos-Qiao 18])

Testing isometry of alternating matrix tuples in A(n,g)™ can be
done in time poly(n, m, g) when g is odd.

% The outputs are a coset representative and a set of generators.

Pseudo-isometry Testing for odd ¢
Input: G = (Gy,...,Gpn),H=(Hi,...,Hn) € A(n,q)", constant c.
» Enumerate all c-tuples Hc in (Hi,..., Hn);
» For each H = (Hj, ..., H.), test isometry with G. = (G,..., G.);
» If they are isometric, check whether every isometry T is also a
pseudo-isometry between G and H.
Running time is dominated by two For-loops:
» Enumerate c-tuples: ¢°". % H! = aj1Hi + -+ + i mHp for i € [c]
{T € GL(n,q) : T'G.T = H.}|.

» Enumerate Isometries: For each H,

VY He, {T € GL(n,q) : T'G.T = H.}|< q°" = time bound ¢°"t™. ]




Given G = (G, ...,Gn),H=(H1,...,Hn) € N(n,q)™,
VH. € (H)S, {T € GL(n,q) : T!G.T = H.}|< ¢°"

is not true in general.




Given G = (G, ...,Gn),H=(H1,...,Hn) € N(n,q)™,
VH. € (H)S, {T € GL(n,q) : T!G.T = H.}|< ¢°"

is not true in general.

But it holds for any G chosen uniformly at random!
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Coset Autometry group

Claim:
For a random G € A(n, g)™, with high probability we have

|Autm(G.)| = [{T € GL(n,q) : T'G.T = G.}| < g%,
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Coset Autometry group

Claim:
For a random G € A(n, g)™, with high probability we have

|Autm(G.)| = {T € GL(n, q) : T'G.T = G}| < q°".

Random graphs have automorphism group size O(1) with high
probability [Erdés-Rényi 1963]



Average-case Analysis: Adjoint Algebra

Observation: For every H,,

HT € GL(n,q): T'G. T =H.}| < |{T € GL(n,q) : T'G.T = G.}|

Coset Autometry group

Claim:
For a random G € A(n, g)™, with high probability we have

|Autm(G.)| = [{T € GL(n,q) : T'G.T = G.}| < g%,

The adjoint algebra and adjoint space:
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Average-case Analysis: Adjoint Algebra

Observation: For every H,,

HT € GL(n,q): T'G. T =H.}| < |{T € GL(n,q) : T'G.T = G.}|

Coset Autometry group

Claim:
For a random G € A(n, g)™, with high probability we have

|Autm(G.)| = [{T € GL(n,q) : T'G.T = G.}| < g%,

The adjoint algebra and adjoint space:
Adj(Ge) = {(A,D) € M(n,q) @ M(n,q) : AG. = G.D}.
Adj(G, He) = {(A,D) € M(n, q) ® M(n, q) : AG. = H.D}.
> |Autm(G.)| < |Adj(Ge)| as T € Autm(G.) = (T%, T71) € Adj(G.).
» If G and H. are isometric, |Adj(Gc, H¢)| = |Adj(G.)]

» Can be efficiently computed by solving systems of linear equations.
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% The stable concept comes from geometric invariant theory.
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Average-case Analysis: Stable Alternating Tuples

Stable (Alternating) matrix tuple:

For every nontrivial subspace U of FZ,

dim(G(V)) = dim((GLU, ..., G.U)) > dim(U).

% The stable concept comes from geometric invariant theory.

» |If G, is stable, then every nonzero elements in Adj(G.) is invertible.
(Exercise!)

> Adj(G.) is a finite division algebra over F4 which contains identity.

» Adj(G.) is a field by Wedderburn's little theorem. And we can
conclude

[ Theorem: G, is stable = |Adj(G.)| < ¢". ]
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Claim: With probability 1 — , a random G¢ is stable.
» Convert 4 random alternatlng matrices into 1 random matrix.

» Upper bound the probability of a random tuple of 5 matrices
being nonstable.

Theorem:
For ¢ > 20, with probability 1— , arandom G. € A(n, q)°

satisfies [Autm(G.)| < g ).
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Pseudo-isometry testing for odd g

Input: G = (Gi,...,Gn),H=(H,...,Hn) € A(n,q)", constant ¢ > 20.
» Compute a generating set of Autm(G.);

If [Autm((Gi, ..., Gc))| > q", terminate;

Enumerate all c-tuples in (Hi, ..., Hm);

For each H = (Hy, ..., H.), test isometry with G. = (Gy, ..., G.);

If they are isometric, check whether every isometry T is also a
pseudo-isometry between G and H.

>
>
>
>

Theorem
For odd g and m > 20, the above algorithm tests pseudo-isometry for almost
but n) fraction of G € A(n, )™ with arbitrary H € A(n, g)" in time qOlrtm)

» odd g = all g: Replace all isometry tests by computing adjoint algebra
and adjoint space

1
> o = Q(nm) Enumerate all c-tuples of G until one stable tuple is
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Other results (not in this talk)

> A general strategy for group isomorphism which combines recent
algebraic techniques with the Weisfeiler-Leman refinement
technique for Graph Isomorphism.

» A new random model for finite groups, and average-case results to
support the “filter and WL" refinement.

» Worst-case polynomial-time algorithms for testing isomorphism of
groups with “genus-2 radicals”.

arXiv:1905.02518
Thanks for your Attention!



